Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574312 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136536 | PLOS |
Nat Commun
January 2025
Climate and Ecosystem Sciences Division, Berkeley Lab, Berkeley, CA, USA.
Climate warming may accelerate decomposition of Arctic soil carbon, but few controlled experiments have manipulated the entire active layer. To determine surface-atmosphere fluxes of carbon dioxide and methane under anticipated end-of-century warming, here we used heating rods to warm (by 3.8 °C) to the depth of permafrost in polygonal tundra in Utqiaġvik (formerly Barrow), Alaska and measured fluxes over two growing seasons.
View Article and Find Full Text PDFCommun Biol
December 2024
The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK.
Ecotoxicol Environ Saf
December 2024
Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea. Electronic address:
Global warming-induced permafrost thawing raises concerns about the release of dormant microbes, including potentially harmful plant pathogens. However, the potential pathogenic risks associated with the thawing of permafrost remain poorly understood. Here, we conducted a 90-day soil incubation experiment at 4 °C to mimic extended permafrost thawing in Alaskan tundra soils stratified into active (A), transitional (T), and permanently frozen (P) layers.
View Article and Find Full Text PDFEcology
December 2024
Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.
Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO fluxes in three tundra habitats varying in soil moisture and plant-community composition.
View Article and Find Full Text PDFZootaxa
August 2024
40 Barnes Crescent; Ottawa; Ontario; K2H7C2; Canada.
A new soil-dwelling mite species, Zerconopsis sibiricus sp. nov., is described from Russia based on the females, males, and nymphs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!