Hypothesis: Dexamethasone (DXM) protects against cisplatin-induced auditory hair cell (HC) loss in rat organ of Corti (OC) explants in vitro by reducing levels of oxidative stress and NADPH-Oxidase-3 (NOX-3).

Background: Intratympanic DXM has demonstrated protective effects against cisplatin-induced hearing loss in a few animal studies and one clinical trial. However, levels of protection with intratympanic DXM vary significantly between studies, which may not be a result of the intrinsic properties of DXM but rather reflect the diffusion of DXM into the cochlea. The molecular mechanisms and degree of DXM protection against cisplatin ototoxicity are currently unknown.

Methods: OC explants from 3-day-old rats were cultured with no treatment or various concentrations of cisplatin (2, 5, or 10 μM) and DXM (75, 150, or 300 μg/mL) in vitro. HC viability and TUNEL assay were performed after 72 hours in vitro and levels of oxidative stress and NOX-3 were evaluated with confocal microscopy after 48 hours in vitro. Analysis of variance with Tukey's post hoc testing was performed.

Results: Cisplatin initiated dose-dependent losses of outer HCs (OHCs) in the basal turns of exposed explants (p < 0.001). DXM protected against cisplatin (2 μM)-induced OHC loss in a dose-dependent manner with complete protection at 300 μg/mL of DXM (p < 0.001). DXM (150 μg/mL) significantly reduced levels of oxidative stress, NOX-3, and apoptosis in the basal turn of explants exposed to cisplatin (2 μM).

Conclusions: DXM protects against cisplatin-induced loss of OHCs in the basal turn of rat OC explants as demonstrated by reductions in oxidative stress and NOX-3 production and decreased levels of apoptotic cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MAO.0000000000000849DOI Listing

Publication Analysis

Top Keywords

auditory hair
8
levels oxidative
8
oxidative stress
8
intratympanic dxm
8
hours vitro
8
dxm
7
vitro
5
dexamethasone protects
4
protects apoptotic
4
apoptotic cell
4

Similar Publications

Loss of Fascin2 increases susceptibility to cisplatin-induced hearing impairment and cochlear cell apoptosis in mice.

J Otol

July 2024

Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.

Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.

View Article and Find Full Text PDF

To encode continuous sound stimuli, the inner hair cell (IHC) ribbon synapses utilize calcium-binding proteins (CaBPs), which reduce the inactivation of their Ca1.3 calcium channels. Mutations in the gene underlie non-syndromic autosomal recessive hearing loss DFNB93.

View Article and Find Full Text PDF

Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca channels.

View Article and Find Full Text PDF

A modiolar-pillar gradient in auditory-nerve dendritic length: A novel post-synaptic contribution to dynamic range?

Hear Res

December 2024

Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States; Department of Otolaryngology-Head & Neck Surgery, Harvard Medical School, Boston, MA, United States. Electronic address:

Auditory-nerve fibers (ANFs) from a given cochlear region can vary in threshold sensitivity by up to 60 dB, corresponding to a 1000-fold difference in stimulus level, although each fiber innervates a single inner hair cell (IHC) via a single synapse. ANFs with high-thresholds also have low spontaneous rates (SRs) and synapse on the side of the IHC closer to the modiolus, whereas the low-threshold, high-SR fibers synapse on the side closer to the pillar cells. Prior biophysical work has identified modiolar-pillar differences in both pre- and post-synaptic properties, but a comprehensive explanation for the wide range of sensitivities remains elusive.

View Article and Find Full Text PDF

Advancements of ROS-based biomaterials for sensorineural hearing loss therapy.

Biomaterials

May 2025

Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China. Electronic address:

Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!