Objectives: The prevailing linear reductionist medical model seems unable to explain complex multisymptomatic illnesses such as fibromyalgia (FM) and similar maladies. Paradigms derived from the complexity theory may provide a coherent framework for these elusive illnesses. Along these lines is the proposal that FM represents a degradation of our main complex adaptive system (the autonomic nervous system, ANS), in a failed effort to adjust to a hostile environment. Healthy complex systems have fractal structures. Heart rate fractal-like variability reflects resilient ANS performance. Our aim was to measure the heart rate variability (HRV) fractal scaling index in FM patients and to correlate this index with clinical symptoms.

Method: We studied 30 women with FM and 30 controls. All participants filled out questionnaires assessing the severity of FM. The HRV fractal scaling index was estimated during 24 h using detrended fluctuation analysis (DFA).

Results: The fractal scaling index alpha-1 was higher in FM patients than in controls (mean ± sd: 1.22 ± 0.10 vs. 1.16 ± 0.09; p = 0.031). There was a positive correlation between the fractal scaling index alpha-1 and the visual analogue scale (VAS) for depression (Spearman's ρ = 0.36, p = 0.04).

Conclusions: The heart rate fractal exponent alpha-1 is altered in FM patients, suggesting a rigid ANS performance. This tangible non-linear finding supports the notion that FM may represent a degradation of our main complex adaptive system, namely the ANS.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03009742.2015.1055299DOI Listing

Publication Analysis

Top Keywords

fractal scaling
16
heart rate
12
autonomic nervous
8
nervous system
8
degradation main
8
main complex
8
complex adaptive
8
adaptive system
8
system ans
8
ans performance
8

Similar Publications

A constitutive model for coal gangue coarse-grained subgrade filler incorporating particle breakage.

Sci Rep

January 2025

Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China.

The accumulation and discharge amount of coal gangue are substantial, occupying significant land resources over time. Utilizing coal gangue as subgrade filler can generate notable economic and social benefits. Coal gangue coarse-grained soil (CGSF) was used to conduct a series of large-scale vibration compaction tests and large-scale triaxial tests.

View Article and Find Full Text PDF

Mechanism analysis for the differences in multi-level structure, enzyme accessibility and pasting properties of starch granules caused by different hydrolysis pathways of maltogenic α-amylase.

Food Chem

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.

The effect of pores distribution on the multi-scale structure, enzyme accessibility, and pasting properties of the waxy maize starch granules with the same degree of hydrolysis were examined. Increased maltogenic α-amylase (MA) dosage obviously increased the shallow pores number and the roughness, whereas extended time increased the holes depth. Despite achieving the same hydrolysis degree and specific surface area, samples with numerous shallow holes exhibited a higher mass fractal dimension, a lower, peak viscosity, final viscosity and setback.

View Article and Find Full Text PDF

Heterogeneous dynamics in aging phosphate-based geopolymer.

J Chem Phys

January 2025

Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic.

The time-evolution of dynamics as well as microstructure and mechanical response of phosphate-based geopolymers was probed using x-ray photon correlation spectroscopy and rheological tests. The analyzed relaxation processes in the freshly prepared geopolymer mixes evidenced a q-independent mode of the autocorrelation function, ascribed to density fluctuations of the already established molecular network, undergoing reconfiguration without significant mass transport. Upon curing, the detected motions are localized and depict a system evolving toward structural arrest dominated by slower hyperdiffusive dynamics, characterized by a compressed exponential regime, pointing to a structural relaxation process subjected to internal stresses, in a context of marked dynamical and structural heterogeneity.

View Article and Find Full Text PDF

Physical unclonable functions (PUFs) are considered the most promising approach to address the global issue of counterfeiting. Current PUF devices are often based on a single stochastic process, which can be broken, especially since their practical encoding capacities can be significantly lower than the theoretical value. Here we present stochastic PUF devices with features across multiple length scales, which incorporate semiconducting polymer nanoparticles (SPNs) as fluorescent taggants.

View Article and Find Full Text PDF

The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!