Background: So far many algorithms have been proposed towards the detection of significant genes in microarray analysis problems. Several of those approaches are freely available as R-packages though their engagement in gene expression analysis by non-bioinformaticians is usually a frustrating task. Besides, only some of those packages offer a complete suite of tools starting from initial data import and ending to analysis report. Here we present an R/Bioconductor package that implements a hybrid gene selection method along with a bunch of functions to facilitate a thorough and convenient gene expression profiling analysis.
Results: mAPKL is an open-source R/Bioconductor package that implements the mAP-KL hybrid gene selection method. The advantage of this method is that selects a small number of gene exemplars while achieving comparable classification results to other well established algorithms on a variety of datasets and dataset sizes. The mAPKL package is accompanied with extra functionalities including (i) solid data import; (ii) data sampling following a user-defined proportion; (iii) preprocessing through several normalization and transformation alternatives; (iv) classification with the aid of SVM and performance evaluation; (v) network analysis of the significant genes (exemplars), including degree of centrality, closeness, betweeness, clustering coefficient as well as the construction of an edge list table; (vi) gene annotation analysis, (vii) pathway analysis and (viii) auto-generated analysis reporting.
Conclusions: Users are able to run a thorough gene expression analysis in a timely manner starting from raw data and concluding to network characteristics of the selected gene exemplars. Detailed instructions and example data are provided in the R package, which is freely available at Bioconductor under the GPL-2 or later license http://www.bioconductor.org/packages/3.1/bioc/html/mAPKL.html.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572678 | PMC |
http://dx.doi.org/10.1186/s12859-015-0719-5 | DOI Listing |
Mol Ther
January 2025
European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff, CF24 4HQ, UK. Electronic address:
In the setting of monogenic disease, advances made in genome editing technologies can, in principle, be deployed as a therapeutic strategy to precisely correct a specific gene mutation in an affected cell type and restore functionality. Using the β-hemoglobinopathies and hemophilia as exemplars, we review recent experimental breakthroughs utilizing CRISPR-derived genome editing technology that have translated to significant improvements in the management of inherited hematologic disorders. Yet there are also challenges facing the use of CRISPR mediated genome editing in these patients and we discuss possible ways to obviate those issues for furtherance of clinical benefit.
View Article and Find Full Text PDFRoutine use of genetic data in healthcare is much-discussed, yet little is known about its performance in epidemiological models including traditional risk factors. Using severe COVID-19 as an exemplar, we explore the integration of polygenic risk scores (PRS) into disease models alongside sociodemographic and clinical variables. PRS were optimized for 23 clinical variables and related traits previously-associated with severe COVID-19 in up to 450,449 UK Biobank participants, and tested in 9,560 individuals diagnosed in the pre-vaccination era.
View Article and Find Full Text PDFIMA Fungus
December 2024
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA.
Multicopy nuclear ribosomal DNA (rDNA) genes have been used as markers for fungal identification for three decades. The rDNA sequences in a genome are thought to be homogeneous due to concerted evolution. However, intragenomic variation of rDNA sequences has recently been observed in many fungi, which may make fungal identification and species abundance estimation based on these loci problematic.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada.
Unlabelled: There is growing interest in members of the genus (family ) as members of a well-balanced human gut microbiota (HGM). are particularly associated with the consumption of a diet rich in plant polysaccharides comprising dietary fiber. However, understanding of the molecular basis of complex carbohydrate utilization in species is currently incomplete.
View Article and Find Full Text PDFNat Commun
December 2024
Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
African trypanosomes are important parasites in sub-Saharan Africa that undergo a quorum-sensing dependent development to morphologically 'stumpy forms' in mammalian hosts to favour transmission by tsetse flies. However, some trypanosome clades have simplified their lifecycle by escaping dependence on tsetse allowing an expanded geographic range, with direct transmission between hosts achieved via blood-feeding biting flies and vampire bats (Trypanosoma brucei evansi, causing 'surra') or through sexual transmission (Trypanosoma brucei equiperdum, causing 'dourine'). Concomitantly, stumpy formation is reduced and the isolates are described as monomorphic, with infections spread widely in Africa, Asia, South America and parts of Europe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!