HIV-associated neurocognitive disorder (HAND) consists of motor and cognitive dysfunction in a relatively large percentage of patients with AIDS. Prior work has suggested that at least part of the neuronal and synaptic damage observed in HAND may occur due to excessive stimulation of NMDA-type glutamate receptors (NMDARs). Here, we compared pharmacological and genetic manipulation of NMDAR activity using an improved derivative of the NMDAR antagonist memantine, termed NitroMemantine, and the modulatory NMDAR subunit GluN3A in the HIV/gp120 transgenic (tg) mouse model of HAND. Interestingly, we found that while both NitroMemantine and GluN3A have been shown to inhibit NMDAR activity, NitroMemantine protected synapses in gp120-tg mice, but overexpression of GluN3A augmented the damage. Given recent findings in the field, one explanation for this apparently paradoxical result is the location of the NMDARs primarily affected, with NitroMemantine inhibiting predominantly extrasynaptic pathologically activated NMDARs, but GluN3A disrupting normal NMDAR-mediated neuroprotective activity via inhibition of synaptic NMDARs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821006 | PMC |
http://dx.doi.org/10.1007/s12031-015-0651-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!