Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Whole genome amplification (WGA) is a widely used technique allowing multiplying picogram amounts of target DNA by several orders of magnitude. The technique described here is based on heat-induced random fragmentation yielding DNA strands mainly ranging from 0.1 to 1 kb in length. The fragmented DNA is then subjected to library generation by annealing of adaptor sequences to both ends of the DNA fragments. Using primers hybridizing to the adapter sequences, the DNA is amplified by thermal cycling. This amplification typically yields > 2 mg DNA from a single cell, is suited for amplifying DNA isolated from (partly) degraded samples [e.g. formalin-fixed paraffin-embedded (FFPE) material] and works well when used for array-comparative genome hybridization (array-CGH).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2990-0_7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!