Electronic Properties of MoS2-WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy.

ACS Nano

Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong, SAR P. R. China.

Published: October 2015

Formation of heterojunctions of transition metal dichalcogenides (TMDs) stimulates wide interest in new device physics and technology by tuning optical and electronic properties of TMDs. TMDs heterojunctions are of scientific and technological interest for exploration of next generation flexible electronics. Herein, we report on a two-step epitaxial ambient-pressure CVD technique to construct in-plane MoS2-WS2 heterostructures. The technique has the potential to artificially control the shape and structure of heterostructures or even to be more potentially extendable to growth of TMD superlattice than that of one-step CVD technique. Moreover, the unique MX2 heterostructure with monolayer MoS2 core wrapped by multilayer WS2 is obtained by the technique, which is entirely different from MX2 heterostructures synthesized by existing one-step CVD technique. Transmission electron microscopy, Raman and photoluminescence mapping studies reveal that the obtained heterostructure nanosheets clearly exhibit the modulated structural and optical properties. Electrical transport studies demonstrate that the special MoS2 (monolayer)/WS2 (multilayer) heterojunctions serve as intrinsic lateral p-n diodes and unambiguously show the photovoltaic effect. On the basis of this special heterostructure, depletion-layer width and built-in potential, as well as the built-in electric field distribution, are obtained by KPFM measurement, which are the essential parameters for TMD optoelectronic devices. With further development in future studies, this growth approach is envisaged to bring about a new growth platform for two-dimensional atomic crystals and to create unprecedented architectures therefor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b03188DOI Listing

Publication Analysis

Top Keywords

cvd technique
12
electronic properties
8
mos2-ws2 heterostructures
8
heterostructures synthesized
8
one-step cvd
8
technique
5
properties mos2-ws2
4
heterostructures
4
synthesized two-step
4
two-step lateral
4

Similar Publications

Background: Implementation of semaglutide weight loss therapy has been challenging due to drug supply and cost, underscoring a need to identify those who derive the greatest absolute benefit.

Objectives: Allocation of semaglutide was modeled according to coronary artery calcium (CAC) among individuals without diabetes or established atherosclerotic cardiovascular disease (CVD).

Methods: In this analysis, 3,129 participants in the MESA (Multi-Ethnic Study of Atherosclerosis) without diabetes or clinical CVD met body mass index criteria for semaglutide and underwent CAC scoring on noncontrast cardiac computed tomography.

View Article and Find Full Text PDF

Introduction: Cardiovascular disease (CVD) is the leading cause of death for women in the United States, and U.S. female Veterans have higher rates of CVD compared to civilian women.

View Article and Find Full Text PDF

Renal disease is common in patients with cardiovascular disease (CVD) and is associated with adverse outcomes. Cardiac magnetic resonance (CMR) with advanced mapping techniques is the gold standard for characterizing myocardial tissue, and renal tissue is often visualized on these maps. However, it remains unclear whether renal T1 times accurately reflect renal dysfunction or predict adverse outcomes.

View Article and Find Full Text PDF

: Sudden cardiac death (SCD) poses a significant burden on the modern-day public health system; however, while our understanding of the underlying pathophysiology is still evolving and may not be complete, many insights are known and applied every day. Targeted prevention methods are continually being developed and refined. We conducted a systemic review and meta-analysis to identify a blood nutritional biomarker that can predict and screen population groups at high risk for cardiovascular disease mortality (CVD mortality) or SCD.

View Article and Find Full Text PDF

Background: Dyslipidemia, a leading risk factor for cardiovascular diseases (CVDs), significantly contributes to global morbidity and mortality. Rice bran, rich in bioactive compounds such as γ-oryzanol and tocotrienols, has demonstrated promising lipid-modulating effects.

Objective: This meta-analysis aimed to evaluate the effects of rice bran on lipid profiles, including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), and identify factors influencing its efficacy across different populations and intervention conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!