Young's moduli of selected amino acid molecular crystals were studied both experimentally and computationally using nanoindentation and dispersion-corrected density functional theory. The Young modulus is found to be strongly facet-dependent, with some facets exhibiting exceptionally high values (as large as 44 GPa). The magnitude of Young's modulus is strongly correlated with the relative orientation between the underlying hydrogen-bonding network and the measured facet. Furthermore, we show computationally that the Young modulus can be as large as 70-90 GPa if facets perpendicular to the primary direction of the hydrogen-bonding network can be stabilized. This value is remarkably high for a molecular solid and suggests the design of hydrogen-bond networks as a route for rational design of ultra-stiff molecular solids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201505813 | DOI Listing |
Bioengineering (Basel)
December 2024
Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany.
Cell functionality, driven by remarkable plasticity, is strongly influenced by mechanical forces that regulate mesenchymal stem cell (MSC) fate. This study explores the biomechanical properties of jaw periosteal cells (JPCs) and induced mesenchymal stem cells (iMSCs) under different culture conditions. We cultured both JPCs and iMSCs (n = 3) under normoxic and hypoxic environments, with and without osteogenic differentiation, and on laminin- or gelatin-coated substrates.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.
The synovium is a loose connective tissue that separates the intra-articular (IA) joint compartments of all diarthrodial joints from the systemic circulation. It can be divided into two layers: the intima, a thin and cell-dense layer atop a more heterogeneous subintima, composed of collagen and various cell types. The subintima contains penetrating capillaries and lymphatic vessels that rapidly clear injected drugs from the joint space which may vary not only with drug size and charge but also with the microstructure and composition of the intima and subintima of the synovium.
View Article and Find Full Text PDFHyperelastic materials are extensively incorporated in medical implants and microelectromechanical systems due to their large, elastic, recoverable strains. However, their mechanical properties are sensitive to processing parameters that may lead to inconsistent characterization. Various test setups have been employed for characterizing hyperelastic materials; however, they are often costly.
View Article and Find Full Text PDFMed Ultrason
December 2024
Key Laboratory of Ultrasound of Shaanxi Province, School of Physics and Information Technology, Shaanxi Normal University, Xi'an.
Aims: Shear wave elastography (SWE) is of great significance in measuring the elasticity and in evaluating mechanical properties of biological tissues. The elasticity of biological tissues can be reflected by measuring the propagation velocity of shear waves. Therefore, accurate estimation of shear wave velocity is crucial.
View Article and Find Full Text PDFJ Neural Eng
December 2024
Biomedical Engineering Unit, Department of Industrial Engineering, University of Florence, Florence, Italy.
. The perception of softness plays a key role in interactions with various objects, both in the real world and in virtual/augmented reality (VR/AR) systems. The latter can be enriched with haptic feedback on virtual objects' softness to improve immersivity and realism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!