Background: Neuroinflammation is considered a risk factor for impairments in neuronal function and cognition that arise with trauma, infection, and/or disease. IL-17A has been determined to be involved in neurodegenerative diseases such as multiple sclerosis. Recently, IL-17A has been shown to be upregulated in lipopolysaccharide(LPS)-induced systemic inflammation. This study aims to explore the role of IL-17A in LPS-induced neuroinflammation and cognitive impairment.
Methods: Male Sprague-Dawley (SD) rats were injected intraperitoneally with LPS (500 μg/kg), and IL-17A expression in serum and in the hippocampus was examined 6, 12, 24, and 48 h later. Then, we investigated whether IL-17A-neutralizing antibodies (IL-17A Abs, 1 mg/kg) prevented neuroinflammation and memory dysfunction in aged rats that received LPS (500 μg/kg) injection. In addition, the effect of IL-17A on microglial activation in vitro was determined using ELISA and immunofluorescence.
Results: LPS injection increased the expression of IL-17A in serum and in the hippocampus. IL-17A Abs improved LPS-induced memory impairment. In addition, IL-17A Abs prevented the LPS-induced expression of TNF-α, IL-6 and inflammatory proteins, and of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as the activation of microglia in the brain. IL-17A Abs also inhibited the expression of amyloid precursor protein (APP) and BACE1 and increased the expression of the synaptic marker PSD95 in the aged rats treated with LPS. In an in vitro study, we found that recombinant IL-17A could simulate microglial activation and increase production of pro-inflammatory cytokines.
Conclusion: Taken together, our results suggest that IL-17A was involved in LPS-induced neuroinflammation and cognitive impairment in aged rats via microglial activation. Anti-IL-17A may represent a new therapeutic strategy for the treatment of endotoxemia-induced neuroinflammation and cognitive dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572693 | PMC |
http://dx.doi.org/10.1186/s12974-015-0394-5 | DOI Listing |
Viruses
November 2024
Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania.
The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy.
View Article and Find Full Text PDFNutrients
December 2024
Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy.
Aim: This article aims to explore the role of the human gut microbiota (GM) in the pathogenesis of neurological, psychiatric, and neurodevelopmental disorders, highlighting its influence on health and disease, and investigating potential therapeutic strategies targeting GM modulation.
Materials And Methods: A comprehensive analysis of the gut microbiota's composition and its interaction with the human body, particularly, its role in neurological and psychiatric conditions, is provided. The review discusses factors influencing GM composition, including birth mode, breastfeeding, diet, medications, and geography.
Nutrients
December 2024
Foodomics Lab, Institute of Food Science Research (CIAL, CSIC), 28049 Madrid, Spain.
Systematic Alzheimer's disease (AD) is a neurodegenerative disease increasingly prevalent in the aging population. AD is characterized by pathological features such as -amyloid (A) plaque accumulation, tau neurofibrillary tangles formation, oxidative stress, an impaired cholinergic system, and neuroinflammation. Many therapeutic drugs have been developed to slow the progression of AD by targeting these pathological mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy.
The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Zlotowski Center for Neuroscience and Zelman Center-The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
This narrative review examines lithium's effects on immune function, inflammation and cell survival, particularly in bipolar disorder (BD) in in vitro studies, animal models and clinical studies. In vitro studies show that high lithium concentrations (5 mM, beyond the therapeutic window) reduce interleukin (IL)-1β production in monocytes and enhance T-lymphocyte resistance, suggesting a protective role against cell death. Lithium modulates oxidative stress in lipopolysaccharide (LPS)-activated macrophages by inhibiting nuclear factor (NF)-ƙB activity and reducing nitric oxide production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!