Glucose diffusivity in cell-seeded tissue engineering scaffolds.

Biotechnol Lett

Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.

Published: January 2016

Objective: To determine the effective glucose diffusion coefficient in cell-seeded porous scaffolds to understand the importance of nutrient diffusion in tissue engineering bioreactors.

Results: Cell growth changed the morphological structure of the scaffolds decreasing the effective pore space and, inevitably, decreasing the effective glucose diffusivity in the chosen scaffolds, namely, collagen, poly(L-lactide) and poly(caprolactone) scaffolds from 3.7 × 10(-9) to 3.2 × 10(-9) m(2)/s, 1.4 × 10(-10) to 9.1 × 10(-11) m(2)/s and 1.8 × 10(-10) to 1.3 × 10(-10) m(2)/s, respectively.

Conclusions: The presence of cells over time during cell culture reduces the mobility of glucose. The results can predict the glucose concentration profiles in thick engineered tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-015-1958-2DOI Listing

Publication Analysis

Top Keywords

glucose diffusivity
8
tissue engineering
8
effective glucose
8
decreasing effective
8
m2/s 10-10
8
glucose
5
scaffolds
5
diffusivity cell-seeded
4
cell-seeded tissue
4
engineering scaffolds
4

Similar Publications

Dietary fiber (DF) is an indigestible carbohydrate in plant foods that supports various physiological functions. This study aimed to extract the soluble and insoluble dietary fiber (DF) from the curry leaves and investigate their physicochemical properties as well as their functional role in the homeostasis of the gut microbiome. The study observed that insoluble-DF (IDF) yielded higher amounts than soluble-DF (SDF) across alkali, acid, and water extraction methods.

View Article and Find Full Text PDF

Nutritional value, HPLC-DAD analysis and biological activities of Ceratonia siliqua L. pulp based on in vitro and in silico studies.

Sci Rep

December 2024

Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural research (INRA), Avenue Ennasr, BP 415 Rabat principal, Rabat, 10090, Morocco.

The phytochemical, nutritional, and biological features of wild carob pulp from Tanzight (TN), Ait-Waada (AW), and Tizi-ghnayn (TG) in Azilal were studied. The results of the study reveal that the carob pulp examined has a low-fat level. AW had the most total sugar (78.

View Article and Find Full Text PDF

The kidney plays an essential role in the proper homeostasis of glucose. In the kidney, glucose transport is carried out across cell membranes by two families of glucose transporters-facilitated diffusion glucose transporters (GLUTs) and Na(+)-dependent glucose co-transporters (SGLT family). Among the transporters, sodium-dependent glucose co-transporters play a major role in the kidney's ability to reabsorb glucose.

View Article and Find Full Text PDF

The directional assembly of porous organic molecules into long-range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale-assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation.

View Article and Find Full Text PDF

Lactic acid is an important platform feedstock for synthesizing various chemicals. Lactic acid is normally converted from any sugar such as glucose, and Sn-β zeolite is an effective catalyst. In this study, β zeolite with different Si/Al ratios was prepared and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!