A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis of Copper-Based Nanostructured Catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 Supports for NO Reduction. | LitMetric

The selective catalytic reduction of NO over a series of Cu-based catalysts supported on modified silica including SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 prepared via a sol-gel process and a flame spray pyrolysis (FSP) was studied. The prepared catalysts were characterized by means of TEM, XRD, XRF, TPR, and nitrogen physisorption measurement techniques, to determine particle diameter, morphology, crystallinity, phase composition, copper reducibility, surface area, and pore size of catalysts. The particles obtained from sol-gel method were almost spherical while the particles obtained from the FSP were clearly spherical and non-porous nanosized particles. The effects of Si:Al, Si:Ti, and Si:Zr molar ratio of precursor were identified as the domain for different crystalline phase of materials. It was clearly seen that a high SiO2 content inhibited the crystallization of materials. The BET surface area of catalysts obtained from sol-gel method was higher than that from the FSP and it shows that surface area increased with increasing SiO2 molar ratio due to high surface area from SiO2. The catalyst performances were tested for the selective catalytic reduction of NO with H2. It was found that the catalyst prepared over 7 wt% Cu on Si02-Al2O3 support was the most active compared with the others which converted NO as more than 70%. Moreover, the excess copper decreased the performance of NO reduction, due to the formation of CuO agglomeration covered on the porous silica as well as the alumina surface, preventing the direct contact of CO2 and AL2O3.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.9874DOI Listing

Publication Analysis

Top Keywords

surface area
16
sio2-al2o3 sio2-tio2
8
sio2-tio2 sio2-zro2
8
selective catalytic
8
catalytic reduction
8
sol-gel method
8
molar ratio
8
catalysts
5
surface
5
synthesis copper-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!