A facile one-pot solvothermal method was developed for the synthesis of carboxylic functionalized MFe2O4 (M = Mn, Co, Zn) nanospheres. Field-emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometer, and a superconducting quantum interference device magnetometer were used to characterize the morphologies, compositions and properties of the functionalized materials. Results show that all of the products were cubic spinel structures and exhibited hierarchical sphere-like morphologies, which were composed of primary nanocrystals. The MFe2O4 present advantageous functionality and good water dispensability due to the preferential exposure of uncoordinated carboxylate groups on their respective surfaces. These properties make them ideal candidates for various important applications such as drug delivery, bioseparation, and magnetic resonance imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.9256 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!