We devised directionally controllable THz emission sources based on lateral composition modulation (LCM) structures. LCM structures were composed of In-rich Ga0.47In0.53P and Ga-rich Ga0.51In0.49P layers whose period was in quantum scale of ~`5 nm. The inherent type II band alignment in these structures leads to electron-hole (e-h) separation and plays a key role in generating later- ally polarized dipole ensembles, thus concomitantly emitting enhanced transmissive THz waves as compared to bulk sample. On the other hand, in lateral geometry, changes in THz fields between LCM and bulk structures turned out to negligible since the vertical electronic diffusion was allowed in both samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.10429 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!