A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polymeric Nanoparticles of Enoxaparin as a Delivery System: In Vivo Evaluation in Normal Rats and in a Venous Thrombosis Rat Model. | LitMetric

Enoxaparin is an anticoagulant widely used in the treatment and prophylaxis of deep vein thrombosis (DVT). The subcutaneous route of administration, sometimes in repeated doses during 24 hours, represents a limitation to its use. Thus, the development of a product that can be administered either subcutaneously, in a smaller number of applications becomes a major challenge, with interesting clinical applications. The use of a system for sustained release of drugs can help to meet that goal, by protecting and enabling a gradual released of the agent. This study consisted of the evaluation of in vivo anticoagulant and antithrombotic activity of biodegradable nanoparticles of poly (ε-caprolactone) (PCL) with enoxaparin after subcutaneous injection. The nanoparticles were prepared by the method of double emulsion (w/o/w) and solvent evaporation. Subcutaneous enoxaparin encapsulated in PCL nanoparticles (1000 IU/kg) showed a sustained release in vivo for up to 12 hours (Cmax 0.62 IU/mL) a significantly longer period (P < 0.01) when compared to free enoxaparin (1000 IU/Kg) that disappeared after 9 hours (Cmax 1.50 IU/mL), however with lower anti-Xa activity. The antithrombotic action of enoxaparin-nanoparticles was tested in a DVT model by stasis in rats. There were virtually no formation of venous thrombosis in any of the rats that received enoxaparin encapsulated in nanoparticles (0.03 mg), with a significant difference when compared to groups that received saline (17.2 mg, P < 0.001) and free enoxaparin (2.87 mg, P = 0.001). In summary, enoxaparin-encapsulated in polymeric nanoparticles showed a sustained release for a greater period than that of enoxaparin, and with excellent antithrombotic action. These results corroborate the promising use of pharmacological nanoparticles in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.9816DOI Listing

Publication Analysis

Top Keywords

sustained release
12
polymeric nanoparticles
8
enoxaparin
8
venous thrombosis
8
enoxaparin encapsulated
8
1000 iu/kg
8
hours cmax
8
free enoxaparin
8
antithrombotic action
8
nanoparticles
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!