Two-dimensional (2D) geometrical shape-shifting is prevalent in nature, but remains challenging in man-made "smart" materials, which are typically limited to single-direction responses. Here, we fabricate geometrical shape-shifting bovine serum albumin (BSA) microstructures to achieve circle-to-polygon and polygon-to-circle geometrical transformations. In addition, transformative two-dimensional microstructure arrays are demonstrated by the ensemble of these responsive microstructures to confer structure-to-function properties. The design strategy of our geometrical shape-shifting microstructures focuses on embedding precisely positioned rigid skeletal frames within responsive BSA matrices to direct their anisotropic swelling under pH stimulus. This is achieved using layer-by-layer two photon lithography, which is a direct laser writing technique capable of rendering spatial resolution in the sub-micrometer length scale. By controlling the shape, orientation and number of the embedded skeletal frames, we have demonstrated well-defined arc-to-corner and corner-to-arc transformations, which are essential for dynamic circle-to-polygon and polygon-to-circle shape-shifting, respectively. We further fabricate our shape-shifting microstructures in periodic arrays to experimentally demonstrate the first transformative 2D patterned arrays. Such versatile array configuration transformations give rise to structure-to-physical properties, including array porosity and pore shape, which are crucial for the development of on-demand multifunctional "smart" materials, especially in the field of photonics and microfluidics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b04300 | DOI Listing |
Adv Mater
December 2024
The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China.
Materials (Basel)
October 2024
NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA.
Four-dimensional printing refers to a process through which a 3D printed object transforms from one structure into another through the influence of an external energy input. Self-folding structures have been extensively studied to advance 3D printing technology into 4D using stimuli-responsive polymers. Designing and applying self-folding structures requires an understanding of the material properties so that the structural designs can be tailored to the targeted applications.
View Article and Find Full Text PDFSensors (Basel)
May 2024
School of Science, Auckland University of Technology, Auckland 1010, New Zealand.
Underwater optical wireless communication (UOWC) has gained interest in recent years with the introduction of autonomous and remotely operated mobile systems in blue economic ventures such as offshore food production and energy generation. Here, we devised a model for estimating the received power distribution of diffused line-of-sight mobile optical links, accommodating irregular intensity distributions beyond the beam-spread angle of the emitter. We then used this model to conduct a spatial analysis investigating the parametric influence of the placement, orientation, and angular spread of photodiodes in array-based receivers on the mobile UOWC links in different Jerlov seawater types.
View Article and Find Full Text PDFAdv Mater
June 2024
Department of Mechanical Engineering, McGill University, Montréal, Québec, H3A 0C3, Canada.
Shape morphing in bistable kirigami enables remarkable functionalities appealing to a diverse range of applications across the spectrum of length scale. At the core of their shape shifting lies the architecture of their repeating unit, where highly deformable slits and quasi-rigid rotating units often exhibit multiple symmetries that confer isotropic deployment obeying uniform scaling transformation. In this work, symmetry breaking in bistable kirigami is investigated to access geometric frustration and anisotropic morphing, enabling arbitrarily scaled deployment in planar and spatial bistable domains.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Nonlinear Physical Chemistry Unit, Université libre de Bruxelles, 1050, Brussels, Belgium.
The recent emergence of stimuli-responsive, shape-shifting materials offers promising applications in fields as different as soft robotics, aeronautics, or biomedical engineering. Targeted shapes or movements are achieved from the advantageous coupling between some stimulus and various materials such as liquid crystalline elastomers, magnetically responsive soft materials, swelling hydrogels, etc. However, despite the large variety of strategies, they are strongly material dependent and do not offer the possibility to choose between reversible and irreversible transformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!