A widely tunable optoelectronic oscillator (OEO) based on a self-injection-locked monolithic dual-mode amplified feedback laser (DM-AFL) is proposed and experimentally demonstrated. In the proposed OEO structure, the DM-AFL functions as an active tunable microwave photonic filter (MPF). By tuning the injection current applied on the amplifier section of the AFL, tunable microwave outputs ranging from 32 to 41 GHz and single sideband phase noises below -97  dBc/Hz at 10 kHz offset from the carriers were realized.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.40.004340DOI Listing

Publication Analysis

Top Keywords

optoelectronic oscillator
8
dual-mode amplified
8
amplified feedback
8
feedback laser
8
microwave photonic
8
photonic filter
8
tunable microwave
8
frequency-tunable optoelectronic
4
oscillator dual-mode
4
laser electrically
4

Similar Publications

Resonantly Enhanced Hybrid Wannier-Mott-Frenkel Excitons in Organic-Inorganic Van Der Waals Heterostructures.

Adv Mater

January 2025

Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China.

Hybrid excitons formed via resonant hybridization in 2D material heterostructures feature both large optical and electrical dipoles, providing a promising platform for many-body exciton physics and correlated electronic states. However, hybrid excitons at organic-inorganic interface combining the advantages of both Wannier-Mott and Frenkel excitons remain elusive. Here, hybrid excitons are reported in the copper phthalocyanine/molybdenum diselenide (CuPc/MoSe) heterostructure (HS) featuring strong molecular orientation dependence by low-temperature photoluminescence and absorption spectroscopy.

View Article and Find Full Text PDF

Enhancement of quantum synchronization in triple-cavity system.

Sci Rep

January 2025

School of Physics and Optoelectronics, Xiangtan University, Xiangtan, 411105, China.

We introduce two strategies to enhance quantum synchronization within a triple-cavity optomechanical system, where each cavity contains an oscillator and is interconnected via optical fibers. Our results demonstrate that applying appropriate periodic modulation to the driving fields or the cavity modes can ensure robust quantum synchronization across both open and closed configurations. This approach offers promising avenues for expanding quantum synchronization capabilities in multi-cavity systems and has significant implications for advancing quantum synchronization generation and application in complex networks.

View Article and Find Full Text PDF

Probing Berry Phase Effect in Topological Surface States.

Phys Rev Lett

December 2024

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.

We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven electron-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase.

View Article and Find Full Text PDF

Moiré magnetism and moiré excitons in twisted CrSBr bilayers.

Proc Natl Acad Sci U S A

January 2025

Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330-8268.

Moiré excitons and moiré magnetism are essential to semiconducting van der Waals magnets. In this work, we perform a comprehensive first-principles study to elucidate the interplay of electronic excitation and magnetism in twisted magnetic CrSBr bilayers. We predict a twist-induced quantum phase transition for interlayer magnetic coupling and estimate the critical twist angle below which moiré magnetism with mixed ferromagnetic and antiferromagnetic domains could emerge.

View Article and Find Full Text PDF

In this Letter, we present a theoretical study based on the Lorentz function and harmonic oscillator model to explore temporal dynamics of charge transfer plasmon (CTP) resonances. By fitting scattering curves and near-field oscillations, we determine the dephasing time of CTP modes in conductively connected gold nanodisk dimers. We show that, compared with the well-known particle plasmon and dimer plasmon modes, the CTP mode has a narrow spectral width and longer lifetime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!