AI Article Synopsis

  • NGF (Nerve Growth Factor) shows potential for treating neurological and other diseases but has pain-inducing side effects, which a "painless" mutant (hNGF R100E) aims to address.
  • Researchers compared several NGF mutants' neurotrophic (nerve growth) and nociceptive (pain-related) properties, finding that the mutants have potent neurotrophic activity with reduced pain effects.
  • The study suggests hNGF P61S R100E as a promising candidate for clinical use, contributing valuable insights into the characteristics that make these "painless" NGF variants effective.

Article Abstract

Background: Nerve Growth Factor (NGF) holds a great therapeutic promise for Alzheimer's disease, diabetic neuropathies, ophthalmic diseases, dermatological ulcers. However, the necessity for systemic delivery has hampered the clinical applications of NGF due to its potent pro-nociceptive action. A "painless" human NGF (hNGF R100E) mutant has been engineered. It has equal neurotrophic potency to hNGF but a lower nociceptive activity. We previously described and characterized the neurotrophic and nociceptive properties also of the hNGF P61S and P61SR100E mutants, selectively detectable against wild type hNGF. However, the reduced pain-sensitizing potency of the "painless" hNGF mutants has not been quantified.

Objectives And Results: Aiming at the therapeutic application of the "painless" hNGF mutants, we report on the comparative functional characterization of the precursor and mature forms of the mutants hNGF R100E and hNGF P61SR100E as therapeutic candidates, also in comparison to wild type hNGF and to hNGF P61S. The mutants were assessed by a number of biochemical, biophysical methods and assayed by cellular assays. Moreover, a highly sensitive ELISA for the detection of the P61S-tagged mutants in biological samples has been developed. Finally, we explored the pro-nociceptive effects elicited by hNGF mutants in vivo, demonstrating an expanded therapeutic window with a ten-fold increase in potency.

Conclusions: This structure-activity relationship study has led to validate the concept of developing painless NGF as a therapeutic, targeting the NGF receptor system and supporting the choice of hNGF P61S R100E as the best candidate to advance in clinical development. Moreover, this study contributes to the identification of the molecular determinants modulating the properties of the hNGF "painless" mutants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570711PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136425PLOS

Publication Analysis

Top Keywords

hngf
13
hngf p61s
12
hngf mutants
12
mutants
9
functional characterization
8
hngf r100e
8
properties hngf
8
wild type
8
type hngf
8
"painless" hngf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!