Leptin binds to receptors in multiple hypothalamic nuclei to increase sympathetic nerve activity; however, the neurocircuitry is unclear. Here, using anesthetized male Sprague-Dawley rats, we investigated the role of the paraventricular nucleus of the hypothalamus. Intracerebroventricular injection of leptin slowly increased lumbar sympathetic nerve activity (LSNA), heart rate, mean arterial pressure, and baroreflex control of LSNA and heart rate. Inhibition of the paraventricular nucleus with muscimol completely reversed leptin's effects. Blockade of paraventricular melanocortin 3/4 receptors with SHU9119 or ionotropic glutamate receptors with kynurenate, alone or together, each partially reversed the effects of leptin, implicating increased activation of glutamate and melanocortin 3/4 receptors. Conversely, although blockade of neuropeptide Y Y1 receptors in the paraventricular nucleus increased LSNA, mean arterial pressure, and heart rate, these responses were prevented by intracerebroventricular or arcuate nucleus injections of leptin, suggesting that, at least in part, leptin also increases sympathetic nerve activity by suppression of tonic neuropeptide Y inhibitory inputs from the arcuate nucleus. Injection of the melanocortin 3/4 receptor agonist melanotan-II into the paraventricular nucleus increased LSNA, mean arterial pressure, and heart rate only after blockade of neuropeptide Y Y1 receptors. Therefore, we conclude that leptin increases LSNA in part via increased glutamatergic and α-melanocyte-stimulating hormone drive of paraventricular sympathoexcitatory neurons, the latter of which requires simultaneous withdrawal of tonic neuropeptide Y inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798233 | PMC |
http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06017 | DOI Listing |
Int J Mol Sci
December 2024
Department of Experimental and Clinical Physiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland.
Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA.
Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed in rodent and human brains, participate in cardiovascular regulation.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Nephrology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, China.
Objects: Taurine exhibits protective effects in the context of cardiovascular pathophysiology. A range of evidence suggests that hypertension activates inflammatory responses and oxidative stress in the paraventricular nucleus (PVN), elevating the arterial tone and sympathetic activity, while it induces gut-brain axis dysfunction in the context of hypertension. However, the mechanism underlying taurine's anti-hypertensive effects via the gut-brain axis remains unclear.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Introduction: The paraventricular thalamic nucleus (PVT) is recognized for its critical role in pain regulation, yet the precise molecular mechanisms involved remain poorly understood. Here, we demonstrated an essential role of the microglial adenosine A receptor (AR) in the PVT in regulating pain sensation and non-opioid analgesia.
Method And Results: Specifically, AR was predominantly expressed in ionized calcium binding adapter molecule 1 (Iba1)-positive microglia cells within the PVT, with expression levels remaining unchanged in mice experiencing persistent inflammatory pain induced by complete Freund's adjuvant (CFA).
Brain Behav Immun Integr
December 2024
Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
Maternal immune activation (MIA), a maternal stressor, increases risk for neuropsychiatric diseases, such as Major Depressive Disorder in offspring. MIA of toll-like receptor 7 (TLR7) initiates an immune response in mother and fetuses in a sex-selective manner. The paraventricular nucleus of the hypothalamus (PVN), a brain region that is sexually dimorphic and regulates hypothalamic-pituitary-adrenal (HPA) stress responses, have been tied to stress-related behaviors (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!