Targeting memory T cells in type 1 diabetes.

Curr Diab Rep

Translational Medicine, Immunology Development, Janssen R&D, Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, 19477, USA.

Published: November 2015

Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to progressive destruction of pancreatic beta cells. Compared to healthy controls, a characteristic feature of patients with T1D is the presence of self-reactive T cells with a memory phenotype. These autoreactive memory T cells in both the CD4(+) and CD8(+) compartments are likely to be long-lived, strongly responsive to antigenic stimulation with less dependence on costimulation for activation and clonal expansion, and comparatively resistant to suppression by regulatory T cells (Tregs) or downregulation by immune-modulating agents. Persistence of autoreactive memory T cells likely contributes to the difficulty in preventing disease progression in new-onset T1D and maintaining allogeneic islet transplants by regular immunosuppressive regimens. The majority of immune interventions that have demonstrated some success in preserving beta cell function in the new-onset period have been shown to deplete or modulate memory T cells. Based on these and other considerations, preservation of residual beta cells early after diagnosis or restoration of beta cell mass by use of stem cell or transplantation technology will require a successful strategy to control the autoreactive memory T cell compartment, which could include depletion, inhibition of homeostatic cytokines, induction of hyporesponsiveness, or a combination of these approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11892-015-0659-5DOI Listing

Publication Analysis

Top Keywords

memory cells
16
autoreactive memory
12
cells
8
type diabetes
8
beta cells
8
beta cell
8
memory
5
targeting memory
4
cells type
4
diabetes type
4

Similar Publications

Background: Cholangiocarcinoma is a challenging malignancy with limited responses to conventional therapies, particularly immune checkpoint inhibitor therapy. Tumor-infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLSs) are key components of the tumor microenvironment (TME) and have been implicated in the immune response to cancer. However, the role and difference of TLSs and TILs in patients with cholangiocarcinoma remains unclear.

View Article and Find Full Text PDF

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin's Lymphoma (NHL), due to T-cell-mediated tumor killing.

View Article and Find Full Text PDF

Background: Programmed cell death 1 (PD-1) signaling blockade by immune checkpoint inhibitors (ICI) effectively restores immune surveillance to treat melanoma. However, chronic interferon-gamma (IFNγ)-induced immune homeostatic responses in melanoma cells contribute to immune evasion and acquired resistance to ICI. Poly ADP ribosyl polymerase 14 (PARP14), an IFNγ-responsive gene product, partially mediates IFNγ-driven resistance.

View Article and Find Full Text PDF

Background: Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis.

Objective: We aimed to investigate how FMD protects against CRC via gut microbiota modulation.

View Article and Find Full Text PDF

This 30-color panel was developed to enable the enumeration and purification of distinct circulating immune cell subsets implicated in the pathogenesis of systemic autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc; scleroderma), Sjögren's disease (SjD), idiopathic inflammatory myopathy (IIM), and others. While designed for application to peripheral blood mononuclear cells, the inclusion of CD45 coupled with the ability to extract cellular autofluorescence spectral signatures enables the application of this panel to other tissue types. Of the 30 total markers, this panel employs 18 markers to profile T cell subsets consisting of different memory subsets and T helper polarities, > 10 markers to profile B cell subsets including double-negative B cells, and a total of 8 lineage markers to identify immune lineages including monocyte and natural killer cell subsets, conventional dendritic cells, plasmacytoid dendritic cells, and basophils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!