Background: The development of multicellular organisms is accompanied by gene expression changes in differentiating cells. Profiling stage-specific expression during development may reveal important insights into gene sets that contributed to the morphological diversity across the animal kingdom.
Results: We sequenced RNA-seq libraries throughout a developmental timecourse of the nematode Pristionchus pacificus. The transcriptomes reflect early larval stages, adult worms including late larvae, and growth-arrested dauer larvae and allowed the identification of developmentally regulated gene clusters. Our data reveals similar trends as previous transcriptome profiling of dauer worms and represents the first expression data for early larvae in P. pacificus. Gene expression clusters characterizing early larval stages show most significant enrichments of chaperones, while collagens are most significantly enriched in transcriptomes of late larvae and adult worms. By combining expression data with phylogenetic analysis, we found that developmentally regulated genes are found in paralogous clusters that have arisen through lineage-specific duplications after the split from the Caenorhabditis elegans branch.
Conclusions: We propose that gene duplications of developmentally regulated genes represent a plausible evolutionary mechanism to increase the dosage of stage-specific expression. Consequently, this may contribute to the substantial divergence in expression profiles that has been observed across larger evolutionary time scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570658 | PMC |
http://dx.doi.org/10.1186/s12862-015-0466-2 | DOI Listing |
J Clin Med
January 2025
H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990096 Lisbon, Portugal.
Age-related macular degeneration (AMD) is a global cause of vision loss, with limited therapeutic options highlighting the need for effective biomarkers. This study aimed to characterize plasma DNA methyltransferase expression (, , and ) in AMD patients and explore divergent expression patterns across different stages of AMD. : Thirty-eight AMD patients were prospectively enrolled and stratified by disease severity: eAMD, iAMD, nAMD, and aAMD.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.
Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.
Nat Commun
January 2025
Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.
View Article and Find Full Text PDFGenes Cells
January 2025
Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.
Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.
View Article and Find Full Text PDFis an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!