Background: The regimen of cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP) is an efficient treatment of non-Hodgkin's lymphoma (NHL). This study aimed to assess the efficacy and toxicity of dose-adjusted CHOP alone or in combination with rituximab (R-CHOP) by examining the stem cell mobilization in NHL patients. Factors affecting the collection of CD34+ cells were also explored.
Methods: Our retrospective study included 39 patients eligible for autologous stem cell transplantation: 14 patients who expressed CD20 and were financially eligible received R-CHOP for autologous peripheral blood stem cell (APBSC) mobilization; the remaining 25 patients received CHOP.
Results: The median CD34+ cell yield was 7.01×10(6) cells/kg body weight (range 1.49-28.39×10(6) cells/kg body weight), with only two patients failing to meet the target CD34+ cell harvest of ≥2.0×10(6) cells/kg body weight. The median number of apheresis procedures per patient was 1 (range 1-3). The APBSC mobilization yield of the CHOP group appeared to be higher than that of the R-CHOP group (P=0.005), whereas the success rate was similar between groups. R-CHOP elevated the complete response (CR) rate in B cell lymphoma patients as compared with CHOP (P=0.01). No significant differences in toxicity or engraftment were observed between the two groups.
Conclusion: The present study demonstrated that dose-adjusted CHOP chemotherapy effectively mobilized APBSCs in NHL patients and that the addition of rituximab to dose-adjusted CHOP chemotherapy elevated the CR rate for patients with B-cell lymphoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593367 | PMC |
http://dx.doi.org/10.1186/s40880-015-0045-3 | DOI Listing |
J Cell Physiol
January 2025
Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.
Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.
Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China.
Presbycusis, also referred to as age-related hearing loss, poses a substantial burden on both individuals and society. The hallmark of presbycusis is a progressive decrease in auditory sensitivity. Irreversible hearing loss occurs due to the limited regenerative capacity of spiral neurons and peripheral cochlear hair cells (HCs).
View Article and Find Full Text PDFSex Med
December 2024
Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark.
Background: Peyronie's disease (PD) is a fibrotic disorder affecting the penile tunica albugínea, with unclear pathophysiology despite centuries of recognition.
Aim: This scoping review maps the effects of interventions in basic PD research, synthesizing evidence from in vivo and in vitro studies to guide future investigation.
Methods: In October-November 2023, a systematic search was conducted across PubMed, Embase (Ovid), Science of Web, and Scopus, following SRYCLE's guidelines.
J Dent Sci
December 2024
Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan.
Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!