ELL Protein-associated Factor 2 (EAF2) Inhibits Transforming Growth Factor β Signaling through a Direct Interaction with Smad3.

J Biol Chem

From the Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,

Published: October 2015

A series of in vitro and in vivo studies has shown that EAF2 can affect multiple signaling pathways involved in cellular processes. However, the molecular mechanisms underlying its effects have remained elusive. Here we report the discovery of a new functional link between EAF2 and TGF-β signaling. Promoter reporter assays indicated that EAF2 suppresses Smad3 transcriptional activity, resulting in inhibition of TGF-β signaling. Coimmunoprecipitation assays showed that EAF2 specifically interacts with Smad3 in vitro and in vivo but not with other Smad proteins. In addition, we observed that EAF2 binding does not alter Smad3 phosphorylation but causes Smad3 cytoplasmic retention, competes with Smad4 for binding to Smad3, and prevents p300-Smad3 complex formation. Furthermore, we demonstrated that EAF2 suppresses both TGF-β-induced G1 cell cycle arrest and TGF-β-induced cell migration. This study identifies and characterizes a novel repressor of TGF-β signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646248PMC
http://dx.doi.org/10.1074/jbc.M115.663542DOI Listing

Publication Analysis

Top Keywords

tgf-β signaling
12
vitro vivo
8
eaf2 suppresses
8
tgf-β-induced cell
8
eaf2
7
smad3
6
signaling
5
ell protein-associated
4
protein-associated factor
4
factor eaf2
4

Similar Publications

Purpose: Dephasing gradients can be introduced within a variety of gradient-echo pulse sequences to delineate local susceptibility changes ("White-Marker" phenomenon), e.g., for the visualization of metallic interventional devices which are otherwise difficult to display.

View Article and Find Full Text PDF

Insect metamorphosis and chitin metabolism under miRNA regulation: a review with current advances.

Pest Manag Sci

March 2025

Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.

Insect metamorphosis is a complex developmental process regulated by microRNAs (miRNAs) and hormonal signaling pathways. Key genes driving insect ontogenic changes are precisely modulated by miRNAs, which interact with 20-hydroxyecdysone (20E) and juvenile hormone (JH) to coordinate developmental transitions. Over the past decade, significant progress has been made in understanding miRNA biogenesis, their regulatory roles in gene expression, and their involvement in critical biological processes, including metamorphosis and chitin metabolism.

View Article and Find Full Text PDF

Denoising complex-valued diffusion MR images using a two-step, nonlocal principal component analysis approach.

Magn Reson Med

March 2025

Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.

Purpose: To propose a two-step, nonlocal principal component analysis (PCA) method and demonstrate its utility for denoising complex diffusion MR images with a few diffusion directions.

Methods: A two-step denoising pipeline was implemented to ensure accurate patch selection even with high noise levels and was coupled with data preprocessing for g-factor normalization and phase stabilization before data denoising with a nonlocal PCA algorithm. At the heart of our proposed pipeline was the use of a data-driven optimal shrinkage algorithm to manipulate the singular values in a way that would optimally estimate the noise-free signal.

View Article and Find Full Text PDF

Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers.

View Article and Find Full Text PDF

Pea plants depend on external structures to reach the strongest light source. To do this, they need to perceive a potential support and to flexibly adapt the movement of their motile organs (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!