In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.10194DOI Listing

Publication Analysis

Top Keywords

hierarchical structure
8
structure silicon
8
silicon structure
8
wet etching
8
structure
7
silicon
6
bio-inspired fabrication
4
fabrication complex
4
hierarchical
4
complex hierarchical
4

Similar Publications

Purpose: Neurotypical individuals show a robust "global precedence effect (GPE)" when processing hierarchically structured visual information. However, the auditory domain remains understudied. The current research serves to fill the knowledge gap on auditory global-local processing across the broader autism phenotype under the tonal language background.

View Article and Find Full Text PDF

Architectural metamaterials that span different length scales and are either self-similar or dissimilar to one another make up hierarchical lattices. Comparing hierarchical lattices to traditional ones reveals that they offer superior and customizable properties, which allows for a wide variety of material property manipulation and optimization. Each computer network can be represented as a graph, where nodes alternate as vertices and links are edges.

View Article and Find Full Text PDF

Background: Given the challenges of pediatric antibacterial therapy, it is crucial to formulate antibiotics with a lower potential for interaction with dietary interventions and tailor them for optimal administration in children. Chemometric methods allow us to analyze multiple interrelated variables simultaneously and uncover correlations.

Aim: We applied a chemometric approach to examine how food, beverages, antacids, and mineral supplements affect antibiotic bioavailability in adults and children, aiming to explore relationships between antibiotic structure, physicochemical properties, and post-meal changes in pharmacokinetic (PK) parameters.

View Article and Find Full Text PDF

Transcription Regulation of Flagellins: A Structural Perspective.

Biochemistry

January 2025

Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India.

Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors.

View Article and Find Full Text PDF

Reticular Synthesis of Covalent Organic Frameworks with kgd-v Topology and Trirhombic Pores.

J Am Chem Soc

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

Two-dimensional (2D) covalent organic frameworks (COFs) with designable pore structures can be synthesized under the guidance of topology diagrams. Among the five existing edge-transitive topological nets, topology is considered a fine candidate for constructing COFs with ultramicropores. However, all of the reported COFs with topology need the use of -symmetric monomers, which are limited in compound type and difficult to synthesize.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!