Titanium (Ti) is the most widely used implant material in dentistry and orthopedics but the release of metal ions from Ti implants results in increased bone resorption by enhancing the production of inflammatory cytokines from the macrophages and facilitating osteoclast differentiation. Thymosin β4 (Tβ4) has several biological activities, such as promoting wound healing, angiogenesis, cell proliferation and migration in mammalian cells. This study examined the role of Tβ4 in osteoblasts via focal adhesions (FAs) and ERK1/2 signaling related to cell adhesion and proliferation for cell survival on the Ti surface. As a result, cell adhesion and proliferation increased in the Tβ4 treated cells (Tβ4/MC3T3-E1) but was significantly lower in the Tβ4 knock-down cells by Tβ4-siRNA (si-Tβ4/MC3T3-E1) than that of the untreated cells. The levels of FAK phosphorylation, paxillin expression, and paxillin localization were higher in the Tβ4/IMC3T3-E1 cells than that of the untreated cells but lower in the si-Tβ4/MC3T3-E1 cells. In addition, the levels of cell proliferation, Grb2 and Ras protein expression and phosphorylation of ERK1/2 were higher in the Tβ4/MC3T3-E1 cells than in the untreated cells but lower in the si-Tβ4/IMC3T3-E1 cells. These results suggest that Tβ4 might be a good nanomolecule that promotes osteoblast survival by facilitating adhesion and proliferation on the Ti surface.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.10464DOI Listing

Publication Analysis

Top Keywords

adhesion proliferation
12
untreated cells
12
cells
10
thymosin β4
8
cell proliferation
8
cell adhesion
8
cells untreated
8
cells lower
8
tβ4
5
cell
5

Similar Publications

3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.

View Article and Find Full Text PDF

Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Background: Chromosome segregation 1 like () overexpression can promote proliferation and migration in cancer. In previous study, we found that CSE1L expression was higher in gastric cancer (GC) tissues compared to normal tissues. However, the biological function and molecular mechanism of CSE1L in GC remains unclear.

View Article and Find Full Text PDF

Degradation products of magnesium implant synergistically enhance bone regeneration: Unraveling the roles of hydrogen gas and alkaline environment.

Bioact Mater

April 2025

Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Biodegradable magnesium (Mg) implant generally provides temporary fracture fixation and facilitates bone regeneration. However, the exact effects of generated Mg ions (Mg), hydrogen gas (H), and hydroxide ions (OH) by Mg degradation on enhancing fracture healing are not fully understood. Here we investigate the degradation of Mg intramedullary nail (Mg-IMN), revealing the generation of these degradation products around the fracture site during early stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!