Application of nanotechnology and nanomaterials in cancer therapeutics has attracted much attention in recent years. Nano titanium dioxide is one of the most important inorganic functional materials. Cellular toxicity of pH-controlled antitumor drug release system of titanium dioxide nanotubes (TiO2-NTs) in pancreatic cancer cells (SW1990) was evaluated in this paper. The anticancer drug, doxorubicin (DOX) was easily loaded on TiO2-NTs through adsorption forces because of its high specific surface area and perfect surface activity. The drug release from the nanotubes was pH dependent. The toxicological effects were studied after co-incubation of SW1990 with TiO2-NTs-DOX, TiO2-NTs and DOX, respectively. The cellular effect of DOX released from the TiO2-NTs-DOX was same as when DOX was used alone, indicating that the synthesized TiO2-NTs are well qualified as drug carriers in antitumor drug controlled-release system.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.9792DOI Listing

Publication Analysis

Top Keywords

antitumor drug
12
drug release
12
titanium dioxide
12
ph-controlled antitumor
8
release system
8
system titanium
8
dioxide nanotubes
8
drug
6
cytotoxicity evaluation
4
evaluation ph-controlled
4

Similar Publications

Most of the triple negative phenotype or basal-like molecular subtypes of breast cancers are associated with aggressive clinical behaviour and show poor disease prognosis. Current treatment options are constrained, emphasizing the need for novel combinatorial therapies for this particular tumor subtype. Our group has demonstrated that functionally active p21 activated kinase 1 (PAK1) exhibits significantly higher expression levels in clinical triple negative breast cancer (TNBC) samples compared to other subtypes, as well as adjacent normal tissues.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment.

View Article and Find Full Text PDF

HER2-targeted ADC DX126-262 combined with chemotherapy demonstrates superior antitumor efficacy in HER2-positive gastric cancer.

Am J Cancer Res

December 2024

Hangzhou DAC Biotechnology Co., Ltd. No. 369 Qiaoxin Road, Qiantang District, Hangzhou 310018, Zhejiang, China.

Gastric cancer is a common malignant tumor with high incidence and mortality. The overexpression of Human epidermal growth factor receptor 2 (HER2) is associated with increased metastatic potential and poor clinical outcome in gastric cancer. Despite the proven clinical response rates of approved HER2-targeted therapies, including Trastuzumab combined with chemotherapy, their limited long-term clinical benefits and inevitable disease progression still pose significant challenges to the clinical treatment of gastric cancer.

View Article and Find Full Text PDF

Background: Melanoma is a highly lethal form of skin cancer, and effective treatment remains a significant challenge. SPP86 is a novel potential therapeutic drug. Nonetheless, the specific influence of SPP86 on autophagy, particularly its mechanisms in the context of DNA damage and apoptosis in human melanoma cells, remains inadequately understood.

View Article and Find Full Text PDF

Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway.

Drug Des Devel Ther

January 2025

Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.

Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!