AI Article Synopsis

  • Using drug delivery vehicles like liposomes and dendrimers can significantly improve the effectiveness of anticancer drugs, such as cisplatin.
  • Traditional methods for encapsulating cisplatin often result in low loading efficiency, but sonication was employed in this study to enhance loading capacity.
  • The results demonstrated that sonication achieved a loading efficiency of around 27.83%, while maintaining the drug's antiproliferative effects against lung cancer cells with reduced cytotoxicity.

Article Abstract

The effect of anticancer drugs could be significantly enhanced if it is encapsulated in drug delivery vehicles such as liposomes, polymers, dendrimers and other materials. For some conventional cisplatin encapsulating methods, however, suffers from low loading efficiency. Therefore, in order to overcome this limitation, in our study, sonication was used in preparation of the nanocomplex of a species of aquated cisplatin and carboxylated PAMAM dendrimer G3.5 to evaluate loading capacity as well as plantinum release behavior using FT-IR, UV-Vis, NMR, ICP-AES, and TEM. The results show that 25.20 and 27.83 wt/wt% of cisplatin were loaded under stirring and sonication respectively, a remarkably improvement in loading efficiency compared to that of conventional method that used of cisplatin. In vitro study showed that this drug-nanocarrier complex also help reduce cisplatin's cytotoxicity but can still keep sufficient antiproliferative activity against lung cancer cell, NCI-H460, with IC50 at 0.985 ± 0.01 μM.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.9808DOI Listing

Publication Analysis

Top Keywords

lung cancer
8
cancer cell
8
loading efficiency
8
improved method
4
method preparing
4
preparing cisplatin-dendrimer
4
cisplatin-dendrimer nanocomplex
4
nanocomplex behavior
4
behavior nci-h460
4
nci-h460 lung
4

Similar Publications

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.

View Article and Find Full Text PDF

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF

Background: The incidence and mortality of lung cancer is the highest among malignant tumors worldwide, and it seriously threatens human life and health. Surgery is the primary radical treatment for lung cancer. However, patients often experience discomfort, changes in social roles, economic pressures, and other postsurgical challenges.

View Article and Find Full Text PDF

Multi-disciplinary treatment of broncho-esophageal fistula in a high-risk single-lung patient.

J Cardiothorac Surg

January 2025

Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway.

Background: A broncho-esophageal fistula (BEF) is a medical and surgical disaster. Treatment of BEF is often limited to palliative stent treatment that may migrate or cause erosions and tissue necrosis. Surgical repair of BEF is the only established definite treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!