A nonlinear plasmonic T-shaped switch based on a square-shaped ring resonator is simulated by the finite-difference time-domain numerical method. Three optical logic gates-a NOT, with one T-shaped switch, and AND and NOR gates, each with two cascaded T-shaped switches-are proposed. The nonlinear Kerr effect is utilized to show the performance of our proposed logic gates. The values of transmission at the ON and OFF states of NOT and NOR gates are 70% and less than 0.6% of the input lightwave, respectively, while these values for the AND gate are 90% and less than 30%, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.007944DOI Listing

Publication Analysis

Top Keywords

logic gates
8
nonlinear plasmonic
8
t-shaped switch
8
all-optical logic
4
gates
4
gates based
4
based nonlinear
4
plasmonic ring
4
ring resonators
4
resonators nonlinear
4

Similar Publications

Nonunitary Gates Using Measurements Only.

Phys Rev Lett

December 2024

Tel Aviv University, School of Physics and Astronomy, Tel Aviv 6997801, Israel.

Measurement-based quantum computation (MBQC) is a universal platform to realize unitary gates, only using measurements that act on a preprepared entangled resource state. By deforming the measurement bases, as well as the geometry of the resource state, we show that MBQC circuits always transmit and act on the input state but generally realize nonunitary logical gates. In contrast to the stabilizer formalism that is often used for unitary gates, we find that ZX-calculus is an ideal computation method for these nonunitary gates.

View Article and Find Full Text PDF

Detection and imaging of dual miRNAs based on AND logic gates can improve the accuracy of the early diagnosis of disease. However, a single target may lead to false positive. Hence, this work rationally integrates hyperbranched rolling circle amplification (HRCA) with Cas12a by replacing the PAM sequence with a bubble to sensitively detect and image miRNA-10b and miRNA-21 based on the AND logic gate.

View Article and Find Full Text PDF

Significant advancements in integrated photonics have enabled high-speed and energy efficient systems for various applications, from data communications and high-performance computing to medical diagnosis, sensing, and ranging. However, data storage in these systems has been dominated by electronic memories that in addition to signal conversion between optical and electrical domains, necessitates conversion between analog to digital domains and electrical data movement between processor and memory that reduce the speed and energy efficiency. To date, scalable optical memory with optical control has remained an open problem.

View Article and Find Full Text PDF

Environment-recognizing DNA nanodevices have proven promising for cellular manipulation and disease treatment, whereas how to sequentially respond to different cellular microenvironments remains a challenge. To this end, here we elaborate a logic-gated intelligent DNA nanorobot (Gi-DR) for the cascade response to inter- and intra-cellular microenvironments, thereby achieving lysosome-targeted cargo delivery for subcellular interference and tumor treatment with enhanced efficacy. Utilizing G-quadruplexes to respond to high-level K+ in cancer cell surrounding, this Gi-DR nanorobot can activate an aptamer-based transmembrane DNA machine that delivers molecular payloads to cellular lysosome.

View Article and Find Full Text PDF

The main obstacle to large scale quantum computing are the errors present in every physical qubit realization. Correcting these errors requires a large number of additional qubits. Two main avenues to reduce this overhead are (i) low-density parity check (LDPC) codes requiring very few additional qubits to correct errors (ii) cat qubits where bit-flip errors are exponentially suppressed by design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!