Diamond-turned aluminum mirrors have been widely used in modern optical systems. However, the machined surfaces have characteristic periodic tool marks, which contribute to reduced optical performance by creating effects such as scattering and distortion. This paper develops a new polishing technology to polish aluminum mirrors directly to remove tool marks and improve surface quality and surface accuracy. A Taguchi experiment was used to obtain optimal polishing conditions for reducing surface roughness, and computer-controlled optical surfacing technology was employed for form correction of aluminum mirrors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.54.007835 | DOI Listing |
PLoS Negl Trop Dis
December 2024
Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America.
Background: Recombinant Necator americanus Glutathione-S-Transferase-1 (Na-GST-1) formulated on Alhydrogel (Na-GST-1/Alhydrogel) is being developed to prevent anemia and other complications of N. americanus infection. Antibodies induced by vaccination with recombinant Na-GST-1 are hypothesized to interfere with the blood digestion pathway of adult hookworms in the host.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China.
In the process of aluminum alloy reflector mirror processing, the structural defects of aluminum alloys present bottlenecks restricting the development of aluminum alloy reflector mirror processing technologies. Therefore, this study proposes an aluminum alloy reflector mirror processing method involving ultrasonic rolling and single-point diamond turning. The core idea of this method is to use ultrasonic rolling to pretreat the surface of the workpiece to refine the grains and increase the hardness, then perform single-point diamond turning to improve the optical reflection performance.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2024
Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun, China.
This article presents a fabrication strategy on the structural design, optimization, additive manufacturing, and processing of metal mirror. Specifically, the study showcases the topology design of a metal mirror with diameter of 200 mm, the additive manufacturing of standard aluminum-based powder (AlSi10Mg), the high-precision single-point diamond turning process of the surface. By setting the feasible domain partition, a topology optimization model suitable for metal additive manufacturing and subsequent surface shaping was constructed, which takes into account the multi-load machining load conditions of single-point diamond turning technology and the material topology representation of standard support structures for additive manufacturing.
View Article and Find Full Text PDFIntegrated coherent mid-infrared (mid-IR) sources are crucial for spectroscopy and quantum frequency conversion (QFC) to facilitate scalable fiber-based application of single photons. Direct mid-IR emission with broad tunability poses fundamental challenges from the gain media and mirror components. This paper presents a characterization of a second-order nonlinear platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!