Diamond-turned aluminum mirrors have been widely used in modern optical systems. However, the machined surfaces have characteristic periodic tool marks, which contribute to reduced optical performance by creating effects such as scattering and distortion. This paper develops a new polishing technology to polish aluminum mirrors directly to remove tool marks and improve surface quality and surface accuracy. A Taguchi experiment was used to obtain optimal polishing conditions for reducing surface roughness, and computer-controlled optical surfacing technology was employed for form correction of aluminum mirrors.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.54.007835DOI Listing

Publication Analysis

Top Keywords

aluminum mirrors
16
tool marks
8
direct polishing
4
aluminum
4
polishing aluminum
4
mirrors
4
mirrors higher
4
higher quality
4
quality accuracy
4
accuracy diamond-turned
4

Similar Publications

Background: Recombinant Necator americanus Glutathione-S-Transferase-1 (Na-GST-1) formulated on Alhydrogel (Na-GST-1/Alhydrogel) is being developed to prevent anemia and other complications of N. americanus infection. Antibodies induced by vaccination with recombinant Na-GST-1 are hypothesized to interfere with the blood digestion pathway of adult hookworms in the host.

View Article and Find Full Text PDF

In the process of aluminum alloy reflector mirror processing, the structural defects of aluminum alloys present bottlenecks restricting the development of aluminum alloy reflector mirror processing technologies. Therefore, this study proposes an aluminum alloy reflector mirror processing method involving ultrasonic rolling and single-point diamond turning. The core idea of this method is to use ultrasonic rolling to pretreat the surface of the workpiece to refine the grains and increase the hardness, then perform single-point diamond turning to improve the optical reflection performance.

View Article and Find Full Text PDF

This article presents a fabrication strategy on the structural design, optimization, additive manufacturing, and processing of metal mirror. Specifically, the study showcases the topology design of a metal mirror with diameter of 200 mm, the additive manufacturing of standard aluminum-based powder (AlSi10Mg), the high-precision single-point diamond turning process of the surface. By setting the feasible domain partition, a topology optimization model suitable for metal additive manufacturing and subsequent surface shaping was constructed, which takes into account the multi-load machining load conditions of single-point diamond turning technology and the material topology representation of standard support structures for additive manufacturing.

View Article and Find Full Text PDF
Article Synopsis
  • Current polishing methods struggle to maintain consistent surface roughness between edges and inner regions, prompting the development of a new sub-aperture polishing technique using chemical mechanical action.
  • A compliant polishing pad combined with a rigid tool holder was designed to maintain constant pressure during the polishing process, improving uniformity.
  • Experimental results show significant enhancements in surface roughness, reducing average roughness from 8.82 nm to 1.71 nm, confirming the effectiveness of this new method in achieving better surface consistency.
View Article and Find Full Text PDF

Integrated coherent mid-infrared (mid-IR) sources are crucial for spectroscopy and quantum frequency conversion (QFC) to facilitate scalable fiber-based application of single photons. Direct mid-IR emission with broad tunability poses fundamental challenges from the gain media and mirror components. This paper presents a characterization of a second-order nonlinear platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!