Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tracking the response of forest ecosystems to climate change demands large (≥1 ha) monitoring plots that are repeatedly measured over long time frames and arranged across macro-ecological gradients. Continental scale networks of permanent forest plots have identified links between climate and carbon fluxes by monitoring trends in tree growth, mortality and recruitment. The relationship between tree growth and climate in Australia has been recently articulated through analysis of data from smaller forest plots, but conclusions were limited by (a) absence of data on recruitment and mortality, (b) exclusion of non-eucalypt species, and (c) lack of knowledge of stand age or disturbance histories. To remedy these gaps we established the Ausplots Forest Monitoring Network: a continental scale network of 48 1 ha permanent plots in highly productive tall eucalypt forests in the mature growth stage. These plots are distributed across cool temperate, Mediterranean, subtropical and tropical climates (mean annual precipitation 850 to 1900 mm per year; mean annual temperature 6 to 21°C). Aboveground carbon stocks (AGC) in these forests are dominated by eucalypts (90% of AGC) whilst non-eucalypts in the understorey dominated species diversity and tree abundance (84% of species; 60% of stems). Aboveground carbon stocks were negatively related to mean annual temperature, with forests at the warm end of the temperature range storing approximately half the amount of carbon as forests at the cool end of the temperature range. This may reflect thermal constraints on tree growth detected through other plot networks and physiological studies. Through common protocols and careful sampling design, the Ausplots Forest Monitoring Network will facilitate the integration of tall eucalypt forests into established global forest monitoring initiatives. In the context of projections of rapidly warming and drying climates in Australia, this plot network will enable detection of links between climate and growth, mortality and carbon dynamics of eucalypt forests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569531 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137811 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!