Many genes are now thought to confer susceptibility to autism. Despite the fact that this neuropsychiatric disease appears to be related to several different causes, common cellular and molecular pathways have emerged and point to synaptic dysfunction or cellular growth. Several studies have indicated the importance of the ubiquitin pathway in synaptic function and the aetiology of autism. Here, we focused on the ring finger protein 135 (RNF135) gene, encoding an E3 ubiquitin ligase expressed in the cortex and cerebellum, and located in the NF1 gene locus in 17q11.2, a region linked to autism. We carried out a genetic analysis of the coding sequence of RFN135 in a French cohort of patients with autism and observed a significantly increased frequency of genotypes carrying the rare allele of the rs111902263 (p.R115K) missense variant in patients (P=0.0019, odds ratio: 4.23, 95% confidence interval: 1.87-9.57). Particularly, three unrelated patients showed a homozygous genotype for K115, a situation not observed in the 1812 control individuals. Further cellular and molecular studies are required to elucidate the role of this gene and the variant K115 in brain development and neuronal function.

Download full-text PDF

Source
http://dx.doi.org/10.1097/YPG.0000000000000100DOI Listing

Publication Analysis

Top Keywords

ubiquitin ligase
8
patients autism
8
cellular molecular
8
autism
5
mutation screening
4
screening ubiquitin
4
gene
4
ligase gene
4
gene rnf135
4
rnf135 french
4

Similar Publications

mTORC1 regulates the pyrimidine salvage pathway by controlling UCK2 turnover via the CTLH-WDR26 E3 ligase.

Cell Rep

January 2025

Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional PhD Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

One critical aspect of cell proliferation is increased nucleotide synthesis, including pyrimidines. Pyrimidines are synthesized through de novo and salvage pathways. Prior studies established that the mammalian target of rapamycin complex 1 (mTORC1) promotes pyrimidine synthesis by activating the de novo pathway for cell proliferation.

View Article and Find Full Text PDF

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

Uveal melanoma (UM) poses a significant lethality, with approximately 50% of those developing metastases surviving less than one year. In the progression of UM, vasculogenic mimicry (VM) induced by hypoxia plays a pivotal role, which also partially explains the resistance of UM to anti-angiogenic therapies. Nevertheless, the crucial molecular mechanisms underlying VM in the progression of UM remain unclear.

View Article and Find Full Text PDF

Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD.

View Article and Find Full Text PDF

The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!