Double-pulsed 2-μm integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO measurement. Design and calibration of a 2-μm double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photoelectromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-μm IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO measurement uncertainty. IPDA lidar ground validation for CO measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO measurement bias, while self-calibration resulted in a better CO temporal profiling when compared to the in situ sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.54.007240 | DOI Listing |
Med Phys
January 2025
OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.
Background: Patient-specific quality assurance (PSQA) is a crucial yet resource-intensive task in proton therapy, requiring special equipment, expertise and additional beam time. Machine delivery log files contain information about energy, position and monitor units (MU) of all delivered spots, allowing a reconstruction of the applied dose. This raises the prospect of phantomless, log file-based QA (LFQA) as an automated replacement of current phantom-based solutions, provided that such an approach guarantees a comparable level of safety.
View Article and Find Full Text PDFSci Rep
January 2025
School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China.
Owing to China's massive area and vastly differing regional variations in the types and efficiency of energy, the spatiotemporal distributions of regional carbon emissions (CE) vary widely. Regional CE study is becoming more crucial for determining the future course of sustainable development worldwide. In this work, two types of nighttime light data were integrated to expand the study's temporal coverage.
View Article and Find Full Text PDFSci Rep
January 2025
College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
The failure of locked-segment landslides is associated with the destruction of locked segments that exhibit an energy accumulation effect. Thus, understanding their failure mode and instability mechanism for landslide hazard prevention and control is critical. In this paper, multiple instruments, such as tilt sensors, pore water pressure gauges, moisture sensors, matrix suction sensors, resistance strain gauges, miniature earth pressure sensors, a three-dimensional (3D) laser scanner, and a camera, were used to conduct the physical model tests on the rainfall-induced arch locked-segment landslide to analyze the resulting tilting deformation and evolution mechanism.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
This study investigates the potential of zinc oxide (ZnO) and Ag-doped zinc oxide (Ag-ZnO) nanoparticles (NPs) (1, 3 and 5 wt%) electrospun into poly(vinylidene fluoride) (PVDF) based triboelectric nanogenerators (TENGs) to harness electrical energy from ambient mechanical vibrations. ZnO and Ag-ZnO NPs were developed using a co-precipitation method. 3 wt% Ag-ZnO doping was optimized to exhibit a higher β-crystalline phase in PVDF (PAZ3).
View Article and Find Full Text PDFNat Commun
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
Visualizing mechanical stress distribution in soft and live biomaterials is essential for understanding biological processes and improving material design. However, it remains challenging due to their complexity, dynamic nature, and sensitivity requirements, necessitating innovative techniques. Since polysaccharides are common in various biomaterials, a biosensor integrating a Förster resonance energy transfer (FRET)-based tension sensor module and carbohydrate-binding modules (FTSM-CBM) has been designed for real-time monitoring of the stress distribution of these biomaterials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!