Elevation of protein carbonyls has been implicated in the clinical setting as a result of oxidant damage associated with a number of disease states in both humans and laboratory animals. Protein carbonyls, the product of oxidative modification of amino acid residues, may result from macrophage and neutrophil inflammatory responses to inhaled particles. We hypothesized that increased levels of protein carbonyl groups in the bronchoalveolar lavage fluid (BALF) may serve as a biomarker of oxidative stress in rodents exposed to extremely high airborne concentrations of poorly soluble particles (PSP) of low toxicity. The objective of the present study was to compare the BALF protein carbonyl levels in three rodent species following a subchronic PSP exposure known to result in pulmonary pathology in chronically exposed rats under similar conditions. Female Fischer 344 rats, B6C3F1 mice, and Syrian golden hamsters were identically exposed by whole-body inhalation to concentrations of aerosolized pigmentary titanium dioxide (TiO2)(MMAD and GSD, 1.42 and 1.3 μm, respectively) for 6 h/day and 5 days/wk for 13 wk. Groups of animals were exposed to 0, 10, 50, or 250 mg/m(3) of pigmentary TiO2. Levels of protein carbonyl groups in BALF were measured at the termination of the 13-wk exposure with an ELISA assay utilizing a 2,4-dinitrophenylhydrazine fluorescent probe. Protein carbonyl levels were elevated in rats at both the mid and high dose (50 and 250 mg/m(3)), while in mice and hamster the levels were elevated only at the high dose (250 mg/m(3)). The elevations in protein carbonyl levels paralleled changes in BALF-associated cytologic and biochemical inflammatory indices, including total protein levels and neutrophil counts. Inflammatory changes in all three species were limited to animals exposed to the highest concentrations of particles. Rats were the only species tested that had coincidental elevation of both protein carbonyls and a high inflammatory response measured in BALF following the 50-mg/m(3) exposure. These results suggest that the measurement of protein carbonyl groups in BALF may be a useful biomarker of particle-induced oxidant change, although this endpoint should be used in conjunction with other oxidative endpoints as a total assessment of oxidant stress.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08958378.2000.11463224DOI Listing

Publication Analysis

Top Keywords

protein carbonyl
24
protein carbonyls
16
carbonyl groups
12
carbonyl levels
12
250 mg/m3
12
protein
11
bronchoalveolar lavage
8
lavage fluid
8
pigmentary titanium
8
titanium dioxide
8

Similar Publications

Due to its commercial availability and well-defined structure, the interaction between bovine protein β-lactoglobulin (βLG) and a wide variety of non-native ligands - including transition metal complexes - has been explored, but its application as an artificial metalloenzyme scaffold is limited. This protein is hypothesized to transport fatty acids and other nutrients during juvenile development, and it binds hydrophobic ligands inside a binding pocket constructed upon an 8-stranded β-barrel, called the 'calyx'. Herein, we compare the binding behavior of two rhenium(anthracene-bispyridine) ('Anth-py') tricarbonyl complexes, one with a 12‑carbon chain appended to the ligand scaffold ('Anth-py') to βLG.

View Article and Find Full Text PDF

Ipomoeassin F (Ipom-F) is a plant-derived macrocyclic resin glycoside that potently inhibits cancer cell growth through blockage of Sec61-mediated protein translocation at the endoplasmic reticulum. Recently, detailed structural information on how Ipom-F binds to Sec61α was obtained using Cryo-EM, which discovered that polar interactions between asparagine-300 (N300) in Sec61α and four oxygens in Ipom-F are crucial. One of the four oxygens is from the carbonyl group at C-4 of the fatty acid chain.

View Article and Find Full Text PDF

: While depression is associated with an increased risk of Alzheimer's dementia (AD), traditional AD-related biomarkers, such as amyloid-beta, have shown limited predictive value for late-life depression. Oxidative stress has emerged as a potential indicator given its shared role in both depression and dementia. This study investigated the longitudinal relationship between oxidative stress biomarkers and risk of dementia in patients with depression.

View Article and Find Full Text PDF

CCL5 Induces a Sarcopenic-like Phenotype via the CCR5 Receptor.

Antioxidants (Basel)

January 2025

Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile.

Sarcopenia corresponds to a decrease in muscle mass and strength. CCL5 is a new myokine whose expression, along with the CCR5 receptor, is increased in sarcopenic muscle. Therefore, we evaluated whether CCL5 and CCR5 induce a sarcopenic-like effect on skeletal muscle tissue and cultured muscle cells.

View Article and Find Full Text PDF

[A novel carbonyl reductase for the synthesis of ()-tolvaptan].

Sheng Wu Gong Cheng Xue Bao

January 2025

Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Materials Sciences, Hebei University, Baoding 071002, Hebei, China.

Screening carbonyl reductases with the ability to catalyze the reduction of complex carbonyl compounds is of great significance for the biosynthesis of -tolvaptan(-TVP). In this study, the target carbonyl reductase in the crude enzyme extract of rabbit liver was separated, purified, and identified by ammonium sulfate precipitation, gel-filtration chromatography, ion exchange chromatography, affinity chromatography, and protein mass spectrometry. With the rabbit liver genome as the template, the gene encoding the carbonyl reductase was amplified by PCR and the recombinant strain was successfully constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!