AI Article Synopsis

  • A compact three-color femtosecond laser system using a photonic crystal fiber (PCF) operates at a frequency of 76 MHz, dependent on the pump laser's repetition rate.
  • This system allows for highly sensitive, background-free measurements through time-resolved four-wave mixing.
  • The effectiveness of the system is demonstrated using time-resolved coherent anti-Stokes Raman scattering measurements on bipyridyl ethylene and styrene.

Article Abstract

We demonstrate the use of a photonic crystal fiber (PCF) as a compact three-color fs laser system operating at 76 MHz, limited only by the repetition rate of the pump laser. The system is suitable for background-free time-resolved four-wave mixing measurements, which arguably reach fundamental limits in signal detectivity. We give a detailed characterization of the near transform-limited multi-color pulses that are extracted from the PCF, and prove the system through time-resolved coherent anti-Stokes Raman scattering measurements in bipyridyl ethylene and styrene.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.024019DOI Listing

Publication Analysis

Top Keywords

time-resolved coherent
8
coherent anti-stokes
8
anti-stokes raman
8
raman scattering
8
laser system
8
supercontinuum-based three-color
4
three-color three-pulse
4
three-pulse time-resolved
4
scattering demonstrate
4
demonstrate photonic
4

Similar Publications

An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Commun Chem

January 2025

Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

Audio-visual concert performances synchronize audience's heart rates.

Ann N Y Acad Sci

January 2025

Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.

People enjoy engaging with music. Live music concerts provide an excellent option to investigate real-world music experiences, and at the same time, use neurophysiological synchrony to assess dynamic engagement. In the current study, we assessed engagement in a live concert setting using synchrony of cardiorespiratory measures, comparing inter-subject, stimulus-response, correlation, and phase coherence.

View Article and Find Full Text PDF

The eye and the heart are two closely interlinked organs, and many diseases affecting the cardiovascular system manifest in the eye. To contribute to the understanding of blood flow propagation towards the retina, we developed a method to acquire electrocardiogram (ECG) coupled time-resolved dynamic optical coherence tomography (OCT) images. This method allows for continuous synchronised monitoring of the cardiac cycle and retinal blood flow dynamics.

View Article and Find Full Text PDF

Spatiotemporal Spectroscopy of Fast Excited-State Diffusion in 2D Covalent Organic Framework Thin Films.

J Am Chem Soc

January 2025

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.

Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.

View Article and Find Full Text PDF

Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!