Giant plasma membrane vesicle (GPMV) isolated from a flask of RBL-2H3 cells appear uniform at physiological temperatures and contain coexisting liquid-ordered and liquid-disordered phases at low temperatures. While a single GPMV transitions between these two states at a well-defined temperature, there is significant vesicle-to-vesicle heterogeneity in a single preparation of cells, and average transition temperatures can vary significantly between preparations. In this study, we explore how GPMV transition temperatures depend on growth conditions, and find that average transition temperatures are negatively correlated with average cell density over 15°C in transition temperature and nearly three orders of magnitude in average surface density. In addition, average transition temperatures are reduced by close to 10°C when GPMVs are isolated from cells starved of serum overnight, and elevated transition temperatures are restored when serum-starved cells are incubated in serum-containing media for 12 h. We also investigated variation in transition temperature of GPMVs isolated from cells synchronized at the G1/S border through a double Thymidine block and find that average transition temperatures are systematically higher in GPMVs produced from G1 or M phase cells than in GPMVs prepared from S or G1 phase cells. Reduced miscibility transition temperatures are also observed in GPMVs prepared from cells treated with TRAIL to induce apoptosis or sphingomyelinase, and in some cases a gel phase is observed at temperatures above the miscibility transition in these vesicles. We conclude that at least some variability in GPMV transition temperature arises from variation in the local density of cells and asynchrony of the cell cycle. It is hypothesized that GPMV transition temperatures are a proxy for the magnitude of lipid-mediated membrane heterogeneity in intact cell plasma membranes at growth temperatures. If so, these results suggest that cells tune their plasma membrane composition in order to control the magnitude of membrane heterogeneity in response to different growth conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569273 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137741 | PLOS |
Nano Lett
January 2025
Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027 Zhejiang, China.
Chiral vortices and their phase transition in ferroelectric/dielectric heterostructures have drawn significant attention in the field of condensed matter. However, the dynamical origin of the chiral phase transition from achiral to chiral polar vortices has remained elusive. Here, we develop a phase-field perturbation model and discover the softening of out-of-plane vibration mode of polar vortices in [(PbTiO)/(SrTiO)] superlattices at a critical epitaxial strain or temperature.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for High Pressure Science & Technology Advanced Research (HPSTAR), Shanghai, 201203, P.R. China.
Under extreme conditions, condensed matters are subject to undergo a phase transition and there have been many attempts to find another form of hydroxide stabilized over HO. Here, using Density Functional Theory (DFT)-based crystal structure prediction including zero-point energy, it is that proton superoxide (HO), the lightest superoxide, can be stabilized energetically at high pressure and temperature conditions. HO is metallic at high pressure, which originates from the 𝜋 orbitals overlap between adjacent superoxide anions (O ).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada.
Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Physical-Chemistry, Complutense University of Madrid, Madrid, Spain.
Intracellular liquid-liquid phase separation (LLPS) of proteins and nucleic acids is a fundamental mechanism by which cells compartmentalize their components and perform essential biological functions. Molecular simulations play a crucial role in providing microscopic insights into the physicochemical processes driving this phenomenon. In this study, we systematically compare six state-of-the-art sequence-dependent residue-resolution models to evaluate their performance in reproducing the phase behaviour and material properties of condensates formed by seven variants of the low-complexity domain (LCD) of the hnRNPA1 protein (A1-LCD)-a protein implicated in the pathological liquid-to-solid transition of stress granules.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Universitat Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, 3012, Bern, SWITZERLAND.
Isotope Exchange processes are becoming the preferred way to prepare isotopically labelled molecules, avoiding the redesign of multistep synthetic protocols. In the case of deuterium incorporation, the most used strategy has employed transition metals, that offer high reactivity under mild reaction conditions. Despite their success, the trade-off is that these metals are precious, and often exhibit high toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!