The mechanism of charge on the near-field intensity distribution is revealed for metallic and dielectric particles with sizes ranging from 10 nm to 10 μm. The theoretical foundation of near-field intensity perturbations is in the discontinuity of the tangential components of the magnetic fields on either side of the interface between the particle and its surrounding medium, since excess electrons form a thin metal-like layer with elevated conductivity. We have shown that the local fields alter marginally if charges are imposed on a surface of a metallic particle. But an intensity amplification is identified in the vicinity of charged dielectric particles with sizes smaller than the wavelength. Specifically, we have demonstrated that the electromagnetic field is amplified near the poles of the particle as a result of the oriented electric and incident fields. In contrast, a dielectric particle that is large compared to the wavelength becomes opaque with a deep shadow at the side opposite to the beam incidence. As a result, intensity damping is identified near a charged sphere in the geometric optics regime. At significant charge densities, the physical properties of a conductive layer play a dominant role in forming the 3D intensity distribution independent of conductivity or permittivity of the particle core. These findings suggest that some electrically chargeable particles have the potential to be used as optical devices with properties tunable through their net surface charge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.54.006674 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 29, SE-100 44 Stockholm, Sweden. Electronic address:
Nano-FTIR spectroscopy is a technique where atomic force microscopy (AFM) and infrared (IR) spectroscopy are combined to obtain chemical information with a lateral resolution of some tens of nm. It has been used to study numerous solid surfaces and recently also liquids including water have been examined by separating the liquid from the AFM tip by a thin lid. However, although the water stretching vibrations are significantly more intense than the bending vibration in conventional IR spectroscopy, only the bending vibration has been observed in nano-FTIR spectroscopy so far.
View Article and Find Full Text PDFACS Photonics
December 2024
School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, U.K.
Tightly confined plasmons in metal nanogaps are highly sensitive to surface inhomogeneities and defects due to the nanoscale optical confinement, but tracking and monitoring their location is hard. Here, we probe a 1-D extended nanocavity using a plasmonic silver nanowire (AgNW) on mirror geometry. Morphological changes inside the nanocavity are induced locally using optical excitation and probed locally through simultaneous measurements of surface enhanced Raman scattering (SERS) and dark-field spectroscopy.
View Article and Find Full Text PDFAdv Mater
December 2024
Advanced Microscopy and Instrumentation Research Center, Harbin Institute of Technology, Harbin, 150080, P. R. China.
Nowadays, metasurfaces have attracted considerable attention due to their promising and advanced control of electromagnetic (EM) waves. However, it is still challenging to shape guided waves into desired free-space mode, while simultaneously manipulating spatial incident waves using a single metasurface. Herein, a class of metasurfaces capable of multiplexing guided and space waves is proposed to achieve advanced EM functionalities in microwave regions, which can find great application potentials in radar systems, wireless communications, and wireless power transfer (WPT).
View Article and Find Full Text PDFNanophotonics
April 2024
School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, China.
Understanding the ultrafast excitation, detection, transportation, and manipulation of nanoscale spin dynamics in the terahertz (THz) frequency range is critical to developing spintronic THz optoelectronic nanodevices. However, the diffraction limitation of the sub-millimeter waves - THz wavelengths - has impaired experimental investigation of spintronic THz nano-emission. Here, we present an approach to studying laser THz emission nanoscopy from W|CoFeB|Pt metasurfaces with ∼60-nm lateral spatial resolution.
View Article and Find Full Text PDFNanophotonics
November 2024
College of Electronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China.
Flexible and diverse manipulation of electromagnetic (EM) waves in half space (reflection or transmission) has facilitated strong aspiration toward full-space wave control. However, it remains challenging to achieve independent amplitude and phase control, which seriously hinder the real-world applications. Herein, an innovative strategy of trifunctional metasurface is proposed to independently and simultaneously manipulate the amplitude and phase of circular polarized waves in full space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!