In dynamic optical networking scenarios, it is desirable that the optical transmitter chooses the most suitable modulation format in order to achieve optimal transmission performance. Owing to the ability of switching among different modulation formats, flexible optical transmitters based on reconfigurable optical devices are becoming a key component for the implementation of future flexible optical networks. In this paper, we experimentally demonstrate a flexible 8-ary transmitter to achieve adaptive switching between 8-ary phase-shift keying (8PSK) and circular 8-ary quadrature-amplitude modulation (8QAM) through reconfiguration of two cascaded in-phase/quadrature (IQ) modulators with different driving signals and biasing conditions. An arbitrary binary quadrature-amplitude modulation (2QAM) with constant or non-constant amplitude is proposed and experimentally demonstrated using an IQ modulator. Then, optical 8PSK or 8QAM modulation formats are successfully synthesized when a standard squared QPSK modulator is cascaded with a constant-amplitude or non-constant-amplitude 2QAM, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.021366 | DOI Listing |
To further meet the large capacity, high spectrum efficiency (SE), reduce the signal-signal beat interference (SSBI) of the independent dual single sideband (ISB) system and the complexity of the receiver, we propose an iterative signal-signal beat interference counteraction (ISSBIC) algorithm to suppress SSBI. The 16-Gbps left sideband and the 16-Gbps right sideband signals in the ISB system are quadrature phase-shift keying (QPSK) modulated. After standard single-mode fiber (SSMF) transmission, the LSB and RSB signals are synthesized to a 16-quadrature amplitude modulation (QAM) signal after conversion through the photodetector (PD) square law.
View Article and Find Full Text PDFA novel diversity combining scheme, in conjunction with the complex-valued decision-directed least mean square (CV-DD-LMS) algorithm, is evaluated, and a real-time experimental validation is presented. This proposed scheme employs the CV-DD-LMS algorithm to concurrently perform beam combination and carrier phase recovery (CPR), thereby effectively reducing the overall complexity of digital signal processing. Furthermore, in the numerical simulation, under a low signal-to-noise ratio (SNR), a scheme utilizing the CV-DD-LMS algorithm effectively avoids cycle slips (CS) and outperforms schemes employing independent CPR modules.
View Article and Find Full Text PDFEntropy (Basel)
November 2022
Department of E.C.E., Sri Eshwar College of Engineering, Coimbatore 641202, India.
Multiple-input Multiple-Output (MIMO) systems require orthogonal frequency division multiplexing to operate efficiently in multipath communication (OFDM). Channel estimation (C.E.
View Article and Find Full Text PDFAn independent sideband (ISB) is a promising scheme for short-reach and metro applications because of its high spectral efficiency, low complexity, and tolerance to chromatic dispersion. Here, we develop a signal synthesis scheme to further reduce the complexity of ISB direct-detection (DD) systems. Two lower-order quadrature amplitude modulation (QAM) sideband signals are generated digitally, then the left sideband (LSB) and right sideband (RSB) are modulated with regular quadrature phase shift keying (QPSK) and geometrically shaped shifted QPSK (GS-S-QPSK), respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!