Elastic optical networks (EON) based on optical superchannel enables higher spectral flexibility, in which the network nodes should provide multiple all-optical functionalities to manipulate bandwidth-variable data traffic. In this paper, we propose and demonstrate an EON node structure supporting reconfigurable optical superchannel multicasting. The node structure incorporates a shared multicasting module, which performs reconfigurable selection of target incoming/outgoing superchannels/replicas and leverages a group of nonlinear devices to satisfy multiple multicast requests. Moreover, an optical comb is utilized to efficiently provide and manage all pump resources for multicasting with potential cost reduction and phase noise inhibition. Based on the node structure, we experimentally demonstrate polarization division multiplexing (PDM) superchannel multicasting scenarios with different replica amount, input/output locations, and modulation formats. Less than 0.7 dB optical signal-to-noise ratio (OSNR) penalties are demonstrated in multiple multicasting scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.020495 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!