The IES standard TM-21-11 provides a guideline for lifetime prediction of LED devices. As it uses average normalized lumen maintenance data and performs non-linear regression for lifetime modeling, it cannot capture dynamic and random variation of the degradation process of LED devices. In addition, this method cannot capture the failure distribution, although it is much more relevant in reliability analysis. Furthermore, the TM-21-11 only considers lumen maintenance for lifetime prediction. Color shift, as another important performance characteristic of LED devices, may also render significant degradation during service life, even though the lumen maintenance has not reached the critical threshold. In this study, a modified Wiener process has been employed for the modeling of the degradation of LED devices. By using this method, dynamic and random variations, as well as the non-linear degradation behavior of LED devices, can be easily accounted for. With a mild assumption, the parameter estimation accuracy has been improved by including more information into the likelihood function while neglecting the dependency between the random variables. As a consequence, the mean time to failure (MTTF) has been obtained and shows comparable result with IES TM-21-11 predictions, indicating the feasibility of the proposed method. Finally, the cumulative failure distribution was presented corresponding to different combinations of lumen maintenance and color shift. The results demonstrate that a joint failure distribution of LED devices could be modeled by simply considering their lumen maintenance and color shift as two independent variables.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.23.00A966 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!