A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microcavity effect using nanoparticles to enhance the efficiency of organic light-emitting diodes. | LitMetric

In this paper, in contrast with previously reported approaches, we suggest exploiting a microcavity effect using nanoparticles to improve the optical efficiency of organic light-emitting diodes (OLED). The method to input the nanoparticles inside the OLED device is simple and cost effective by virtue of employing a solution process using a spin coating fabrication method. Titanium dioxide (TiO2) nanoparticles were used to improve the reflection by its high refractive index. In tandem with optimized heights of the organic layers, the increased light reflectance at the anode side, which includes the TiO2 nanoparticle layer, improved the optical efficiency of the OLED device via the microcavity effect. In order to prove that the enhancement of the optical efficiency was due to an enhanced microcavity effect caused by TiO2 nanoparticles, a microcavity simulation was conducted. The electrical characteristics were not affected by the nanoparticles and a clear pixel image was maintained. The results in this paper show that a nanoparticle based microcavity effect can be exploited to enhance the optical efficiency of OLEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.019863DOI Listing

Publication Analysis

Top Keywords

optical efficiency
16
microcavity nanoparticles
8
efficiency organic
8
organic light-emitting
8
light-emitting diodes
8
nanoparticles improve
8
oled device
8
tio2 nanoparticles
8
microcavity
6
efficiency
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!