The resonance associated with plasmonic nanostructures strongly enhances local optical fields, and can thus dramatically enhance the nonlinear response of the composite structure. However, the origin of the nonlinear signal generated from hybrid nanostructures consisting of both metallic and dielectric components can be ambiguous when all constituents possess nonlinearities. In this paper, we introduce a method for specifically identifying the third harmonic generation (THG) originating from different nonlinear sources in a film-coupled nanostripe. The nanostripe consists of a metallic patch separated from a metallic film by a dielectric spacer. By considering the THG from each nonlinear source separately, we show that the near- and far-field behaviors of the THG generated within the various constituents of the nanostripe are distinguishable due to fundamental differences in the THG radiation properties. The THG signal from the metal is shown to be suppressed by the structure itself, while the THG signal from the spacer is enhanced by the gap plasmon modes supported by the structure. The total THG signal is found to be the sum of all nonlinear sources, with the far-field radiation pattern determined by the ratio between the third-order susceptibilities of the dielectric and the metal.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.019565DOI Listing

Publication Analysis

Top Keywords

thg signal
12
nonlinear sources
8
thg
7
nonlinear
5
clarifying origin
4
origin third-harmonic
4
third-harmonic generation
4
generation film-coupled
4
film-coupled nanostripes
4
nanostripes resonance
4

Similar Publications

Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.

View Article and Find Full Text PDF

Multiphoton and Harmonic Imaging of Microarchitected Materials.

ACS Appl Mater Interfaces

January 2025

Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

Article Synopsis
  • Microadditive manufacturing enables the creation of intricate nano- and microscale components, leading to advancements in various industries.
  • This research explores two-photon and three-photon fluorescence imaging, along with third-harmonic generation microscopy, to analyze complex lattice structures produced by multiphoton lithography.
  • The study reveals that multiphoton fluorescence imaging provides better depth penetration and nondestructive identification of internal modifications and defects, improving quality control in microadditively manufactured products.
View Article and Find Full Text PDF

Nonlinear multimode imaging is a versatile tool to realize complex structural and compositional information of biological samples. In this study, we presented a novel integrated multimode nonlinear optical microscopy system by using an Er3 + -doped femtosecond fiber laser. The system could perform second harmonic generation (SHG), third harmonic generation (THG), and three-photon fluorescence (3PEF) imaging modes simultaneously.

View Article and Find Full Text PDF

Novel CCL3-HMGB1 signaling axis regulating osteocyte RANKL expression in multiple myeloma.

Haematologica

November 2024

Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, US; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, US; Department of Orthopedic Surgery; University of Arkansas for Medical Sciences, Little Rock, AR, US; Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences Little Rock, AR.

Multiple myeloma (MM) is a clonal plasma cell proliferative malignancy characterized by a debilitating bone disease. Osteolytic destruction, a hallmark of MM, is driven by increased osteoclast number and exacerbated bone resorption, primarily fueled by the excessive production of RANKL, the master regulator of osteoclast formation, within the tumor niche. We previously reported that osteocytes, the most abundant cells in the bone niche, promote tumor progression and support MM bone disease by overproducing RANKL.

View Article and Find Full Text PDF

We report on the experimental observation of non-resonant, second-order optical sum-frequency generation (SFG) in five different atomic and molecular gases. The measured signal is attributed to a SFG process by characterizing its intensity scaling and its polarization behavior. We show that the electric quadrupole mechanism cannot explain the observed trends and suggest a mechanism based on symmetry breaking along the incident beam path arising from laser-induced species ground state number density gradients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!