Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Based on the Richards-Wolf vector diffraction theory, we have derived the expressions for the electric field and the propagation velocity of femtosecond radially polarized light pulses focused by a high numerical aperture (NA) objective. The intensity distribution in the focus, wavefront spacings, and propagation velocity variation near the focus are investigated in detail by using numerical calculations. It is found that the propagation velocity of focused ultrashort light pulses changes dramatically near the focus, and the propagation velocity of the focused laser pulse is strongly dependent on the NA of an objective and the refractive index of media. Moreover, the usual propagation velocity of light pulses, as expected, decreases as the refractive index of media increases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.32.001717 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!