Recent insights into cell death and autophagy.

FEBS J

Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.

Published: November 2015

Macroautophagy (hereafter autophagy) is an evolutionarily-ancient mechanism by which cellular material is delivered to lysosomes for degradation. Autophagy and cell death are intimately linked. For example, both processes often use the same molecular machinery and recent work suggests that autophagy has great influence over a cell's decision to live or die. However, this decision-making is complicated by the fact that the role of autophagy in determining whether a cell should live or die goes both ways: autophagy inhibition can result in more or less cell death depending on the death stimulus, cell type or context. Autophagy may also differentially affect different types of cell death. In the present review, we discuss the recent literature that helps make sense of this apparently inconsistent role of autophagy in influencing a cell to live or die.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4885685PMC
http://dx.doi.org/10.1111/febs.13515DOI Listing

Publication Analysis

Top Keywords

cell death
16
live die
12
autophagy
8
role autophagy
8
cell live
8
cell
6
death
5
insights cell
4
death autophagy
4
autophagy macroautophagy
4

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

Phototherapy - which includes photothermal therapy (PTT) and photodynamic therapy (PDT) - has evoked interest as a promising cancer treatment modality on account of its noninvasiveness, spatiotemporal precision, and minimal side effects. C. Wang et al.

View Article and Find Full Text PDF

Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy.

Chem Rev

January 2025

Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.

Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!