The pathways of molecular recognition, which is a central event in all biological processes, belong to the most important subjects of contemporary research in biomolecular science. By using fluorescence spectroscopy in a microfluidics channel, it can be determined that molecular recognition of α-chymotrypsin in hydrous surroundings at two different pH values (3.6 and 6.3) follows two distinctly different pathways. Whereas one corroborates an induced-fit model (pH 3.6), the other one (pH 6.3) is consistent with the selected-fit model of biomolecular recognition. The role of massive structural perturbations of differential recognition pathways could be ruled out by earlier XRD studies, rather was consistent with the femtosecond-resolved observation of dynamic flexibility of the protein at different pH values. At low concentrations of ligands, the selected-fit model dominates, whereas increasing the ligand concentration leads to the induced-fit model. From molecular modelling and experimental results, the timescale associated with the conformational flexibility of the protein plays a key role in the selection of a pathway in biomolecular recognition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201501616 | DOI Listing |
ACS Sens
January 2025
Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, New York 13676, United States.
Chloride is the most abundant anion in cells and plays many critical roles in maintaining cellular homeostasis. However, current chloride indicators are rare with inherent sensitivity in their emission properties, such as vulnerability to pH changes or short emission lifetimes. These limitations restrict their application in aqueous media and imaging.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing 100048, China.
Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates.
View Article and Find Full Text PDFSex Med
December 2024
Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark.
Background: Peyronie's disease (PD) is a fibrotic disorder affecting the penile tunica albugínea, with unclear pathophysiology despite centuries of recognition.
Aim: This scoping review maps the effects of interventions in basic PD research, synthesizing evidence from in vivo and in vitro studies to guide future investigation.
Methods: In October-November 2023, a systematic search was conducted across PubMed, Embase (Ovid), Science of Web, and Scopus, following SRYCLE's guidelines.
Anticancer Agents Med Chem
January 2025
Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey.
Introduction/objective: Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 00 Brno, Czech Republic.
RNA recognition motifs (RRMs) are a key class of proteins that primarily bind single-stranded RNAs. In this study, we applied standard atomistic molecular dynamics simulations to obtain insights into the intricate binding dynamics between uridine-rich RNAs and TbRGG2 RRM using the recently developed OL3-Stafix AMBER force field, which improves the description of single-stranded RNA molecules. Complementing structural experiments that unveil a primary binding mode with a single uridine bound, our simulations uncover two supplementary binding modes in which adjacent nucleotides encroach upon the binding pocket.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!