Infrared spectra of [Re(X)(CO)(3)(α-diimine)] (α-diimine = 2,2'-bipyridine, X = Cl, NCS, or pyridylimidazo[1,5-a]pyridine, X = Cl) in the ground and the lowest triplet electronic states were calculated by a global hybrid density functional going beyond the harmonic level by means of second-order vibrational perturbation theory (VPT2) and including bulk solvent effects by the polarizable continuum model (PCM). The full-dimensionality (FD) VPT2 is compared with the reduced-dimensionality (RD) model, where only selected vibrational modes are calculated anharmonically. The simulated difference IR spectra (excited state minus ground state) in the ν(CO) region closely match experimental time-resolved infrared (TRIR) spectra. Very good agreement was also obtained for ground-state spectra in the fingerprint region. In comparison with the harmonic simulated spectra, the calculated anharmonic frequencies are closer to experimental values and do not require scaling when the B3LYP functional is used. Several spectral features due to combination bands have been identified by VPT2 simulations in the ν(CO) spectral region, which are of importance for a correct interpretation of TRIR experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.5b07585 | DOI Listing |
Radiat Res
January 2025
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni Suef 62764, Egypt.
Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Plant factories with artificial lighting (PFALs) are a notable choice for urban agriculture due to the system's benefits, where light can be manipulated to enhance the product's yield and quality. Our objective was to test the effect of light spectra with different red-blue combinations and white light on the growth, physiology, and overall quality of three baby-leaf vegetables (green lettuce, kale, and pak choi) grown in a restaurant's PFAL. Leaf mass per area was lower under the most blue-containing treatments in all species.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.
Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!