Cholesterol is considered indispensible for the recruitment and functioning of integrins in focal adhesions for cell migration. However, the physiological cholesterol pools that control integrin trafficking and focal adhesion assembly remain unclear. Using Niemann Pick Type C1 (NPC) mutant cells, which accumulate Low Density lipoprotein (LDL)-derived cholesterol in late endosomes (LE), several recent studies indicate that LDL-cholesterol has multiple roles in regulating focal adhesion dynamics. Firstly, targeting of endocytosed LDL-cholesterol from LE to focal adhesions controls their formation at the leading edge of migrating cells. Other newly emerging literature suggests that this may be coupled to vesicular transport of integrins, Src kinase and metalloproteases from the LE compartment to focal adhesions. Secondly, our recent work identified LDL-cholesterol as a key factor that determines the distribution and ability of several Soluble NSF Attachment Protein (SNAP) Receptor (SNARE) proteins, key players in vesicle transport, to control integrin trafficking to the cell surface and extracellular matrix (ECM) secretion. Collectively, dietary, genetic and pathological changes in cholesterol metabolism may link with efficiency and speed of integrin and ECM cell surface delivery in metastatic cancer cells. This commentary will summarize how direct and indirect pathways enable LDL-cholesterol to modulate cell motility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955373PMC
http://dx.doi.org/10.1080/19336918.2015.1019996DOI Listing

Publication Analysis

Top Keywords

integrin trafficking
12
focal adhesions
12
cell motility
8
niemann pick
8
pick type
8
control integrin
8
focal adhesion
8
cell surface
8
cell
5
focal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!