Background: Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped.
Methodology/principal Findings: Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1) and stress-activated MAP kinase (Sty1p38) pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets.
Conclusions/significance: Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4569565 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137820 | PLOS |
Genes Cells
January 2025
Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.
Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFMitochondrion
January 2025
Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India. Electronic address:
Mitochondrial morphology is a result of regulated opposite events called fission and fusion and requires the GTPase, dynamin-related protein 1 (DRP1/Dnm1), or its homologs. A recent clinical report identified a heterozygous missense mutation in the human DRP1 that replaces Glycine (G) 149 with Arginine (R) and results in debilitating conditions in the patient. In this study, we mimicked this mutation in yeast Dnm1 (G178R) and investigated the impact of the pathogenic mutation on the protein's function.
View Article and Find Full Text PDFBiol Open
December 2024
Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France.
The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
Multiple sclerosis (MS) is a devastating autoimmune disease that leads to the destruction of the myelin sheath in the human central nervous system (CNS). Infection by viruses and bacteria has been found to be strongly associated with the onset of MS or its severity. We postulated that the immune system's attack on the myelin sheath could be triggered by viruses and bacteria antigens that resemble myelin sheath components.
View Article and Find Full Text PDFPLoS Biol
January 2025
Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain.
Fission yeast is an excellent model system that has been widely used to study the mechanism that control cell cycle progression. However, there is a lack of tools that allow to measure with high precision the duration of the different phases of the cell cycle in individual cells. To circumvent this problem, we have developed a fluorescent reporter that allows the quantification of the different phases of the cell cycle at the single-cell level in most genetic backgrounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!