Data from the Iowa mumps epidemic of 2006 were collected on a spatial lattice over a regular temporal interval. Without access to a person-to-person contact graph, it is sensible to analyze these data as homogenous within each areal unit and to use the spatial graph to derive a contact structure. The spatio-temporal partition is fine, and the counts of new infections at each location at each time are sparse. Therefore, we propose a spatial compartmental epidemic model with general latent time distributions (spatial PS SEIR) that is capable of smoothing the contact structure, while accounting for spatial heterogeneity in the mixing process between locations. Because the model is an extension of the PS SEIR model, it simultaneously handles non-exponentially distributed latent and infectious time distributions. The analysis within focuses on the progression of the disease over both space and time while assessing the impact of a large proportion of the infected people dispersing at the same time because of spring break and the impact of public awareness on the spread of the mumps epidemic. We found that the effect of spring break increased the mixing rate in the population and that the spatial transmission of the disease spreads across multiple conduits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/sim.6730 | DOI Listing |
Brief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Radiology, Tianjin Key Laboratory of Functional Imaging and Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
Introduction: Although photodynamic therapy (PDT) shows considerable potential for cancer treatment due to its precise spatial control and reduced toxicity, effectively eliminating residual cells under hypoxic conditions remains challenging because of the resistance conferred by these cells.
Methods: Herein, we synthesize an amphiphilic PEGylated polyphosphoester and present a nanocarrier (NP) specifically designed for the codelivery of hydrophobic photosensitizer (chlorin e6, Ce6) and hypoxia-activated prodrugs (tirapazamine, TPZ). We investigate the antitumor effect of NP on both cellular and animal level.
Mediators Inflamm
December 2024
Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.
View Article and Find Full Text PDFParkinsons disease (PD) is considered one of the most frequent neurological diseases in the world. There is a need to study the early and efficient biomarkers of Parkinsons, such as changes in structural disorders like DNA and chromatin, especially at the subcellular level in the human brain. We used two techniques, Partial wave spectroscopy (PWS) and Inverse Participation Ratio (IPR), to detect the changes in structural disorder in the human brain tissue samples.
View Article and Find Full Text PDFUltrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!