All-trans-retinoic acid (ATRA) as a physiological metabolite of vitamin A is widely applied in the treatment of cancer, skin, neurodegenerative and autoimmune diseases. CYP26A1 enzyme, induced by ATRA in liver and target tissues, metabolizes ATRA into 4-hydroxyl-RA. Inhibition of CYP26A1 metabolic enzyme represents a promising strategy for discovery of new specific anticancer agents. Herein, we describe the design, synthesis and biological evaluation of a series of new amide imidazole derivatives as retinoic acid metabolism blocking agents (RAMBAs) toward CYP26A1 enzyme. First, based on the recent theoretical models (Sun et al., J. Mol. Graph. Model., 2015, 56, 10-19) a series of RAMBAs with novel scaffolds were designed using fragment-based drug discovery approach. Subsequently, the new RAMBAs were synthesized and evaluated for their biological activities. All the compounds demonstrated appropriate enzyme activities and cell activities. The promising inhibitors 20 and 23 with IC50 value of 0.22 μM and 0.46 μM toward CYP26A1, respectively, were further evaluated for CYP selectivity and the metabolic profile of ATRA. Both compounds 20 and 23 showed higher selectivity for CYP26A1 over other CYPs (CYP2D6, CYP3A4) when compared to liarozole. They also showed better inhibitory activities for the metabolism of ATRA when also compared to liarozole. These studies further validated the pharmacophore and structure-activity relationship models obtained about CYP26A1 inhibitors and highlighted the promising activities of the new series of CYP26A1 inhibitors designed from such models. They also paved the way for future development of those candidates as potential drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2015.08.019 | DOI Listing |
Anticancer Res
October 2024
Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
Background/aim: Retinoic acid (RA) induces tumor cell differentiation in diseases like acute promyelocytic leukemia or high-risk neuroblastoma. However, the formation of resistant cells, which results from dysregulation of different signaling pathways, limits therapy success. The present study aimed to characterize basic regulatory processes induced by the application of RA in human neuroblastoma cells, to identify therapeutic targets independent of the often amplified oncogene MYCN.
View Article and Find Full Text PDFBiotechnol J
June 2024
Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA.
Cancers (Basel)
January 2024
Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE 19713, USA.
mutation is the main driving mechanism of CRC development and leads to constitutively activated WNT signaling, overpopulation of ALDH+ stem cells (SCs), and incomplete differentiation. We previously reported that retinoic acid (RA) receptors are selectively expressed in ALDH+ SCs, which provides a way to target cancer SCs with retinoids to induce differentiation. : A functional link exists between the WNT and RA pathways, and mutation generates a WNT:RA imbalance that decreases retinoid-induced differentiation and increases ALDH+ SCs.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2023
Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
Neural tube defects (NTDs) are among the most debilitating and common developmental defects in humans. The induction of NTDs has been attributed to abnormal folic acid (vitamin B9) metabolism, Wnt and BMP signaling, excess retinoic acid (RA), dietary components, environmental factors, and many others. In the present study we show that reduced RA signaling, including alcohol exposure, induces NTDs.
View Article and Find Full Text PDFDev Cell
December 2023
Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
CAR-like membrane protein (CLMP) is a tight junction-associated protein whose mutation is associated with congenital short bowel syndrome (CSBS), but its functions in colorectal cancer (CRC) remain unknown. Here, we demonstrate that CLMP is rarely mutated but significantly decreased in CRC patients, and its deficiency accelerates CRC tumorigenesis, growth, and resistance to all-trans retinoic acid (ATRA). Mechanistically, CLMP recruits β-catenin to cell membrane, independent of cadherin proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!