The mitotic spindle is the major piece of cellular machinery essential for faithful chromosome segregation. Whereas Fyn, a member of Src-family kinases, is known to be localized to the meiotic and mitotic spindle microtubules, the role of Fyn in mitotic spindle formation has not yet been completely elucidated. In this study, we studied the role of Fyn in spindle formation and effects on M-phase progression. Re-expression of Fyn induced increases in the fluorescence intensity of mitotic spindle microtubules in SYF cells having triple knock-out mutations of c-Src, c-Yes, and Fyn. Cold treatment results showed that Fyn increases the maximum length of microtubules in HeLa S3 cells in a manner dependent on Fyn kinase activity. Complete depolymerization of microtubules under cold treatment and the following release into 37 °C revealed that the increase in the microtubule length in Fyn-expressing cells may be attributed to the promotion of microtubule polymerization. After cold treatment, Fyn promotes the accumulation of EB1, which is a plus-end tracking protein and facilitates microtubule growth, in a manner dependent on the kinase activity. Furthermore, Fyn accelerates the M phase progression of cells from nocodazole arrest. These results suggest that Fyn facilitates mitotic spindle formation through the increase in microtubule polymerization, resulting in the acceleration of M-phase progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.25373 | DOI Listing |
Iran J Med Sci
December 2024
Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany.
The protein regulator of cytokinesis 1 (PRC1) is a key regulator of microtubule crosslinking and bundling, which is crucial for spindle formation and cytokinesis. RITA, the BP-J nteracting and ubulin-ssociated protein, is a microtubule associated protein. We have reported that RITA localizes to mitotic spindles modulating microtubule dynamics and stability as well as to spindle poles affecting the activity of Aurora A.
View Article and Find Full Text PDFEMBO Rep
January 2025
Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Spindle assembly checkpoint (SAC) inhibitors are a recently developed class of drugs, which perturb chromosome segregation during cell division, induce chromosomal instability (CIN), and eventually lead to cell death. The molecular features that determine cellular sensitivity to these drugs are not fully understood. We recently reported that aneuploid cancer cells are preferentially sensitive to SAC inhibition.
View Article and Find Full Text PDFReproduction
January 2025
D Cohen, Fundación IBYME. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)., Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina.
Artificial oocyte activation (AOA) with Ca2+ ionophores is an experimental procedure that benefits patients who fail to obtain fertilized eggs. However, the impact of non-physiological Ca2+ increases on cellular events involved in egg-embryo transition and early development remains poorly understood. Using the mouse model, this study compares common Ca2+ ionophore protocols applied in clinical practice - one or two exposures to A23187 or a single exposure to ionomycin - focusing on embryonic development and cellular events associated with egg activation.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!