The Polish ventricular assist device (Polvad) has been used successfully in clinical contexts for many years. The device contains two single-disc valves, one at the inlet and one at the outlet connector of the pneumatic pump. Unfortunately, in recent years, a problem has occurred with the availability of single-disc valves. This article presents the possibility of using bileaflet mechanical heart valve prostheses in the Polvad to avoid a discontinuity in clinical use. The study is based on experimental and numerical simulations and comparison of the distribution of flow, pressure, and stress (wall, shear, and turbulent) inside the Polvad chamber and the inlet/outlet connectors fitted with Sorin Monodisc and Sorin Bicarbon Fitline valves. The type and orientation of the inlet valve affects valve performance and flow distribution inside the chamber. Near-wall flow is observed for single-disc valves. In the case of bileaflet valves, the main jet is directed more centrally, with lower shear stress but higher turbulent stress in comparison with single-disc valves. For clinical usage, a 45° orientation of the bileaflet inlet valve was chosen, as this achieves good washing of the inlet area near the membrane paste surface. The Polvad with bileaflet valves has now been used successfully in our clinic for over a year and will continue to be used until new assist devices for heart support are developed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aor.12554DOI Listing

Publication Analysis

Top Keywords

single-disc valves
16
bileaflet mechanical
8
mechanical heart
8
valves
8
polish ventricular
8
ventricular assist
8
assist device
8
clinical usage
8
inlet valve
8
bileaflet valves
8

Similar Publications

Programmable fluidic networks on centrifugal microfluidic discs.

Anal Chim Acta

February 2024

School of Mechanical & Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Glasnevin, Dublin 9, Ireland; I-Form, The SFI Research Centre for Advanced Manufacturing, Dublin City University, Dublin 9, Ireland. Electronic address:

Background: Biomedical diagnostic and lab automation solutions built on the Lab-on-a-Disc (LoaD) platform has great potential due to their independence from specialised micro-pumps and their ease of integration, through direct pipetting, with manual or automated workflows. However, a challenge for all microfluidic chips is their cost of manufacture when each microfluidic disc must be customized for a specific application. In this paper, we present centrifugal discs with programmable fluidic networks.

View Article and Find Full Text PDF

Background: This study investigated flow analysis inside pediatric ventricle assist devices (VADs) designed and manufactured at the Foundation for Cardiac Surgery Development (FRK), Zabrze, Poland. The main goal of the experiment was to define the minimal heart rate admissible in clinical practice.

Methods: The flow was directed by mechanical, single-disc valves developed at the Lodz University of Technology, Institute of Turbomachinery in Lodz, Poland.

View Article and Find Full Text PDF

Chemical Cell Lysis System Applicable to Lab-on-a-Disc.

Appl Biochem Biotechnol

September 2017

College of Information & Communication Engineering, SungKyunKwan University, Suwon, South Korea.

The design and fabrication of a heating system has been a significant challenge in implementing chemical lysis on a lab-on-a-disc (LOD). The proposed system contains a sample inlet, phase change material (PCM) array, heating chamber, and valve in a single disc, providing cost-effective, rapid, and fully automated chemical cell lysis. Compared to the conventional cell lysis system, our cell lysis system has many advantages, such as a compact structure that is easily integrated into the LOD and reduced processing time and labor.

View Article and Find Full Text PDF

Pannus-related prosthetic valve dysfunction. Case report.

Clujul Med

March 2016

Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Clinic of Cardiovascular Surgery, Niculae Stăncioiu Heart Institute, Cluj-Napoca, Romania.

Pannus-related prosthetic valve dysfunction, a complication of mechanical prosthetic valve replacement, is rare, with a slowly progressive evolution, but it can be acute, severe, requiring surgical reintervention. We present the case of a patient with a mechanical single disc aortic prosthesis, with moderate prosthesis-patient mismatch, minor pannus found on previous ultrasound examinations, who presented to our service with angina pain with a duration of 1 hour, subsequently interpreted as non-ST segment elevation myocardial infarction (NSTEMI) syndrome. Coronarography showed normal epicardial coronary arteries, an ample movement of the prosthetic disc, without evidence of coronary thromboembolism, and Gated Single-Photon Emission Computerized Tomography (SPECT) with Technetium (Tc)-99m detected no perfusion defects.

View Article and Find Full Text PDF

The Polish ventricular assist device (Polvad) has been used successfully in clinical contexts for many years. The device contains two single-disc valves, one at the inlet and one at the outlet connector of the pneumatic pump. Unfortunately, in recent years, a problem has occurred with the availability of single-disc valves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!